|| Jai Sri Gurudev ||

BGSKH Education Trust(R.) - A unit of Sri Adichunchanagiri Shikshana Trust(R.) BGS College Of Engineering and Technology

VTU – Dec.2024 / Jan. 2025 – III Sem Question Papers

2022 - Scheme

III Semester Question Papers Dec.2024/Jan - 2025

Sl.No	Name of the Subject	Subject Code
1	Mathematics for Computer Science	BCS301
2	Digital Design and computer Organization	BCS302
3	Operating System	BCS303
4	Data Structures and Applications	BCS304
5	Object Oriented Programming with Java	BCS306A

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Mathematics – III for Computer Science Stream

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. VTU Mathematics Hand Book is permitted. 3. M : Marks, L: Bloom's level, C: Course outcomes.

		Module – 1	Μ	L	С
0.1	a.	A random variable x has the following prob. density function for various	07	L2	CO1
		values of x.	-		
		x 0 1 2 3 4 5 6 7			
		P(x) 0 k 2k 2k 3k k^2 $2k^2$ $7k^2+k$			
		Find the value of k and evaluate $P(x < 6)$, $P(3 < x \le 6)$ and $(x \ge 6)$.			
	b.	Derive the mean and variance of Poisson distribution.	06	L2	CO2
	c.	In a certain town the duration of a shower is exponentially distributed with	07	L3	CO2
		mean 5 minutes. What is the probability that a shower will last for?			
		(1) less than 10 minutes (11) more than 10 minutes and (111) between 10			
		and 12 minutes.			
0.2	9	The probability density function of	07	13	CO1
Q.2	a.	The probability density function of $(V_{\mu})^2 = 2 < \mu < 2$	07	LJ	COI
		$f(x) = \begin{cases} Kx, & -3 < x < 3 \end{cases}$			
		0, elsewhere			
		Find the value of K and evaluate (i) $P(x < 2)$, $P(x > 1)$ (ii) $P(1 \le x \le 2)$			
	b.	When a coin is tossed 4 times, find the probability of getting (i) exactly	06	L2	CO2
		one head (ii) at least three heads and (iii) less than two heads.	0.		GOA
	c.	The marks of 1000 students in an examination follows a normal distribution	07	L2	CO2
		with mean > 0 and S.D 5. Find the number of students whose marks will be (i) less than 65. (ii) more than 75, and (iii) between 65 and 75			
		(1) less than 05 (1) more than 75 and (11) between 05 and 75.			
		Module – 2			
Q.3	a.	If the joint probability distribution of x and y is given by	07	L2	CO2
		$f(x, y) = \frac{1}{2}(x + y)$ for $y = 0, 1, 2, 2, -y = 0, 1, 2$			
		$I(x, y) = \frac{1}{30}(x + y), \text{ for } x = 0, 1, 2, 3, y = 0, 1, 2$			
		Find (i) $P(x \le 2, y = 1)$ (ii) $P(x > y)$			
	b.	Find the unique fixed probability vector of	06	L2	CO3
		$P = 1/6 \ 1/2 \ 1/3$			
		$0 \frac{2}{3} \frac{1}{3}$			
	C	Three hove $A = B$ and C are throwing a ball to each other A always throw	07	13	CO3
	ι.	the ball to B. B always throw the ball to A and C is just as likely to throw	0/	15	
		the ball to A as to B. Find the probability that C has the ball after three			
		throws, if C starts the game.			

1 of 3

BCS/BAD/BAI/BDS301

		OR			I
Q.4	a.	The joint prob. distribution for the following data, find $E(x)$ and $E(y)$.	07	L2	CO2
		Y -2 -1 4 5			
		1 0.1 0.2 0.0 0.3			
	b.	Show that the matrix	06	L2	CO3
		$P = \begin{vmatrix} 1/2 & 0 & 1/2 \end{vmatrix}$ is a regular stochastic matrix.			
		A combler's back follows action 16 he wing a come the work of winging	07	т э	CO2
	c.	A gambler's luck lollows pattern. If he losses a game the prob. of winning the next game is 0.6. However, if he losses a game, the prob. of losing the	0/	LJ	CUS
		next game is 0.7. There is an even chance of the gambler winning the first			
		game What is the prob of he winning the second game			
		game. What is the proof of the winning the second game.			
		Module – 3			
Q.5	a.	Define (i) Null hypothesis (ii) A statistic (iii) Standard error (iv) Level	07	L1	CO4
-		of significance (v) Test of significance.			
	b.	A coin was tossed 400 times and head turned up 216 times. Test the	06	L3	CO4
		hypothesis that the coin is unbiased at 5% LOS.			
	c.	In a city A 20% of a random sample of 900 school boys had a certain slight	07	L3	CO5
		physical defect. In another city B, 18.5% of a random sample of 1600			
		school boys had the same defect. Is the difference between the proportions			
		significant at 5% significance level?			
0.(OR	0.5	T 4	COL
Q.6	a.	Explain the following terms:	07	LI	CO4
		(i) Type-1 and Type-11 errors (ii) Statistical hypothesis			
		(ii) Statistical hypothesis			
		(iii) Critical region (iv) Alternate hypothesis			
	b.	The average marks in Engg. Maths of a sample of 100 students was 51 with	06	L2	CO5
		S.D 6 marks. Could this have been a random sample from a population with	00		000
		average marks 50?			
	c.	One type of aircraft is found to develop engine trouble in 5 flights out of a	07	L3	CO4
		total of 100 and another type in 7 flights out of a total of 200 flights. Is			
		there a significance difference in the two types of aircrafts so far as engine			
		defects are concerned? Test at 0.05 significance level.			
		Module – 4			1
Q.7	a.	State central limit theorem. Use the theorem to evaluate $P(50 < x < 56)$	07	L2	CO4
		where x represents the mean of a random sample of size 100 from an			
		infinite population with mean $\mu = 53$ and variance $\sigma^2 = 400$.			
	b.	Suppose that 10, 12, 16, 19 is a sample taken from a normal population	06	L2	CO5
	1	with variance 6.25. Find 95% confidence interval for the population mean.			
	<u> </u>	Given that $Z(0.15) = 0.0596$.	<u> </u>	.	<u> </u>
	c.	Fit a Poisson distribution to the following data and test for goodness of fit 1.5% LOS	07	L3	CO5
	1				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		x 0 1 2 3 4 f 419 352 154 56 19			
		x 0 1 2 3 4 f 419 352 154 56 19			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		x 0 1 2 3 4 f 419 352 154 56 19 2 of 3 2 3 4 3 3 4 3 1 3 1 3 1 <th1< th=""> <th1< th=""> <th1< th=""> <th< td=""><td></td><td></td><td></td></th<></th1<></th1<></th1<>			

		OR OR			
Q.8	a.	Height of a random sample of 50 college student showed a mean of	07	L2	CO4
		174.5 cms and a S.D 6.9 cms. Construct 99% confidence limits for the			
		mean height of all college students.			
	b.	A random sample of 10 boys had the following I.Q : 70, 120, 110, 101, 88,	06	L3	CO5
		83, 95, 98, 107, 100. DO these data support the assumption of a			
		population mean I.Q of 100 (at 5% LOS)?			
	c.	The theory predicts the propositions of beans in the four groups, G_1 , G_2 ,	07	L3	CO5
		G_3 , G_4 should be in the ratio $9:3:3:1$. In experiment with 1600 beans			
		the numbers in the groups were 882, 313, 287 and 118. Does the			
		Madula 5			
0.0	•	The varieties of wheat $A = B$ C were shown in four plots each and the	10	13	COG
Q.9	а.	following yields in quintals per acre were obtained	10	LJ	
		Δ 8 4 6 7			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $			
		Test the significance of difference between the yields of varieties, given			
		that 5% tabulated value of $F = 4.26$ with (2, 9) d.f. Set up one-way			
		ANOVA and using direct method.			
	b.	Present your conclusion after doing ANOVA to the following results of the	10	L3	CO6
		Latin-square design conducted in respect of five fertilizers which were used			
		on plots of different fertility.			
		A(16) B(10) C(11) D(9) E(9)			
		E(10) $C(9)$ $A(14)$ $B(12)$ $D(11)$			
		B(15) $D(8)$ $E(8)$ $C(10)$ $A(18)$			
		D(12) E(6) B(13) A(13) C(12)			
		C(13) A(11) D(10) E(7) B(14)			
0.10	0	OR Sat up two way ANOVA table for the data given below, using adding	10	12	<u>CO6</u>
Q.10	а.	set up two-way ANOVA table for the data given below, using coding method subtracting 40 from the given numbers	10	LJ	
		Treatment			
		Pieces of land $A B C D$			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
	b.	There are three main brands of a certain power. A set of its 120 sales is	10	L3	CO6
		examined and found to be allocated among four groups (A, B, C, D) and			
		brands (I, II, III) as follows:			
		Brands Groups			
		A B C D			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		is there any significant difference in brands preference? Answer at 5%			
		from all given values			
		i nom an given values.			
		3 of 3			

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Digital Design and Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

				-	
	1	Module – 1	Μ	L	С
Q.1	a.	Determine the complement of the following function:	06	L3	CO1
		(i) $F = xy' + x'y$ (ii) $F = x'yz' + x'y'z$			
	b.	Describe map method for three variables.	04	L2	CO1
	c.	Apply K map technique to simplify the following function:	10	L3	CO1
		(i) $F(x, y, z) = \Sigma(0, 2, 4, 5, 6)$			
		(ii) $F(x, y, z) = x'y + yz' + y'z'$			
		OR			
Q.2	a.	Apply K map technique to simplify the function :	06	L3	CO1
		$F(w, x, y, z) = \Sigma(1, 3, 7, 11, 15)$ and $d(w, x, y, z) = \Sigma(0, 2, 5)$			
	b.	Determine all the prime implicants for the Boolean function F and also	10	L3	CO1
		determine which are essential $F(w, x, y, z) = \Sigma(0, 2, 4, 5, 6, 7, 8, 10, 13, 15)$			
	c.	Develop a verilog gate-level description of the circuit shown in Fig.Q2(c).	04	L3	CO1
		H			
		B			
		I I F			
		1 62			
		×			
		Fig.Q2(c)			
		Module – 2			n
Q.3	a.	Explain the combinational circuit design procedure with code conversion	10	L2	CO2
		example.			
	b.	Design a full adder circuit. Also develop data flow verilog model for full	10	L3	CO2
		adder.			
	1	OR			
Q.4	a.	Describe 4×1 MUX with block diagram and truth table. Also develop a	10	L2	CO2
		behavioral model verilog code for 4×1 MUX.			
	b.	What are storage elements? Explain the working of SR and D latch along	10	L2	CO2
		with logic diagram and function table.			
	1	Module – 3	1		I
Q.5	a.	Explain the basic operational concepts between the processor and memory.	10	L2	CO3
	b.	Describe the following:	10	L2	CO3
		(i) Processor clock			
		(ii) Basic performance equation			
		(iii) Clock rate			
		(iv) SPEC rating			
	1	OR		- -	~
Q.6	a.	Define addressing mode. Explain any four types of addressing mode with	10	L2	CO3
		example.			
		1 of 2			

BCS302 Mention four types of operations to be performed by instructions in a L2 **CO3** b. 10 computer. Explain the basic types of instruction formats to carry out. $C \leftarrow [A] + [B]$ Module – 4 **Q.7** With a neat diagram, explain the concept of accessing I/O devices. a. 10 L2 **CO4** What is bus arbitration? Explain centralized and distributed arbitration L2 b. 10 **CO4** method with a neat diagram. . OR With neat sketches, explain various methods for handling multiple **CO4 Q.8** a. 10 L2 interrupts requests raised by multiple devices. What is cache memory? Explain any two mapping function of cache 10 L2 **CO4** b. memory. Module – 5 Draw the single bus architecture and write the control sequence for **Q.9** 10 L3 **CO5** a. execution of instruction ADD (R_3) , R_1 . With suitable diagram, explain the concept of register transfer and fetching 10 L2 **CO5** b. of word from memory. OR With a neat diagram, explain the flow of 4-stage pipeline operation. Q.10 a. 10 L2 **CO5** Explain the role of cache memory and pipeline performance. 10 L2 **CO5** b.

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Operating Systems

Time: 3 hrs.

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	Define Operating System. Explain dual mode of operating systems with a	06	L1	CO1
		neat diagram.		L2	
	b.	Distinguish between the following terms:	06	L2	C01
		i) Multiprogramming and Multitasking			
		ii) Multiprocessor and Clustered system			
	c.	Explain with a neat diagram VM-WARE Architecture.	08	L1	CO1
				L2	
	-	OR			
Q.2	a.	List and explain the services provided by OS for the user and efficient	06	L2	CO1
	b.	Explain the different computing equipments.	06	L2	CO1
	c.	What are systems calls? List and explain the different types of systems	08	L1	CO1
		calls.		L2	
		Module – 2	<u> </u>		
Q.3	a.	What is process? Explain process state diagram and process control block	10	L1	CO2
		with a neat diagram.		LZ	
	b.	What is interprocess communication? Explain direct and indirect	10	L1	CO2
		communication with respect to message passing system.		L2	
<u> </u>		OR		* 4	~~~
Q.4	a.	List and explain the different types of multithreading models.	06	L1 L2	CO2
	b.	Calculate the average waiting time and average turnaround time by	14	L3	CO2
		drawing the Gantt-chart using FCFS, SJF, RR (Q = 4ms) and priority			
		scheduling (Higher Number is having highest priority).			
		Process B.T. (ms) Priority			
		P_1 24 1 P_2 02 2			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		Module – 3			
Q.5	a.	What is critical section? Give the Peterson's solution to 2 processes critical	05	L1	CO3
		section problem.		L2	
	b.	Explain Reader's and Writer's problem in detail.	07	L2	CO3
		What is amonhore? Discuss the solution to the electical director	00	Τ1	CO2
	c.	what is semaphore: Discuss the solution to the classical dinning	νð	LI I 2	
L	1				

r					
	1	OR			
Q.6	a.	What is a Deadlock? What are the necessary conditions for the deadlock to	06	L1	CO3
	_	occur?		L2	
	b.	Consider the following snap shot of the system.	14	L3	CO2
		<u>Process</u> <u>Allocation</u> <u>Max</u> <u>Available</u>			
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
		$P_0 = \begin{bmatrix} 0 & 1 & 0 & 7 & 5 & 5 & 5 & 5 \\ 0 & 1 & 0 & 0 & 2 & 2 & 2 & 5 & 5 & 2 \\ 0 & 0 & 0 & 0 & 0 & 2 & 2 & 2 & 5 & 5 & 2 \end{bmatrix}$			
		\mathbf{P}_1 2 0 0 5 2 2 \mathbf{P}_2 3 0 2 0 0 2			
		P_2 2 1 1 2 2 2			
		$P_4 = \begin{bmatrix} 2 & 1 & 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 & 3 & 3 \end{bmatrix}$			
		Answer the following questions:			
		i) What is the content of the matrix need?			
		ii) Is the system on a safe state? If so, find safe sequence.			
		iii) If P_1 requirements for $(1, 0, 2)$ additional resources can P_1 be granted.			
		Module – 4			
Q.7	a.	What is paging? Explain with a neat diagram paging hardware with TLB.	10	L1	CO4
	-			L2	~ -
	b.	Explain the different strategies used to select a free hole from available	05	Ľ1	CO4
		holes.	0.7		604
	c.	what is Fragmentation? List and explain its types.	05	LZ	CO4
		O R			
08	•	What is page fault? With a post diagram explain store in handling page	00	12	<u>CO4</u>
Q.0	а.	fault	00		004
	b.	Consider the page reference string for a memory with 3 frames determine	12	L3	CO4
	~.	the number of page faults using FIFO, optimal and LRU replacement		20	00.
		algorithms. Which algorithms is more efficient?			
		7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1			
		Module – 5			
Q.9	a.	Define File. List and explain different file operations and file attributes.	10	L1	CO5
	b.	Explain the different file allocation methods.	10	L2	CO5
0.10			10		CO7
Q.10	a.	what is Access Matrix? Explain the implementation of Access Matrix.	10	L2	CO5
	h	A drive has 5000 cylinders numbered 0 to 1000. The drive is summerfly	10	12	COS
	D.	servicing at a request 143 and previously served a request at 125. The	10	LJ	005
		aueue of pending request in FIFO order.			
		86, 1470, 913, 1774, 948, 1509, 1022, 1750, 130			
		starting from current head position. What is the total distance travelled			
		(in cylinders) by a disk arm to satisfy the request using			
		FCFS, SSTF, SCAN, LOOK and C-Look algorithm			
		* * * * *			
		2 of 2			
		d'			
		7			

CBCS SCHEME **BCS304** Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 **Data Structures and Applications** Max. Marks: 100 e Time: 3 hrs. Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

USN

	1	Martin and States and	M	L	C
		Would = 1	8	L2	COI
Q.1	a.	neat diagram.			
	b.	Write a C Functions to implement pop, push and display operations for	7	L2	CO2
3 Sect	. Alexander	stacks using assays.	5	1.2	CO1
3	c.	Differentiate structures and unions.	10		
-		OR	12		000
Q.2	a.	Write an algorithm to evaluate a postfix expression and apply the same for the given postfix expression. 62/3-42*+.	7	E.I	CO2
	b.	Explain the dynamic memory allocation function in detail.	8	L2	C01
	c.	What is Sparse matrix? Give the triplet form of a given matrix and find its transpose $\begin{bmatrix} 0 & 0 & 3 & 0 & 4 \\ 0 & 0 & 5 & 7 & 0 \end{bmatrix}$	5	L3	COI
70	100 M		See See	ない	
* 1 .	192	Module 2	1000	1000	and the
Q.3	2.	Define Queue. Discuss how to represent a queue using dynamic assays.	8	L2	CO2
	b.	Write a C-Function to implement insertion (), deletion () and display () operations on circular queue.	6	L3	CO2
1.1.4	c.	Write a note on Multiple stacks and queues with suitable diagram.	6	L2	CO2
6	Alana	S OR CON			1
Q.4	2.	What is a linked list? Explain the different types of linked list with neat diagram.	6	L2	CO3
		for the second s			the same of the sa
	b.	 Write a C function for the following on singly linked list with example : i) Insert a node of the beginning ii) Delete a node at the front iii) Display. 	8	1.3	CO3

l of 2

AR. AR

BCS304

	100	Module – 3			
Q.5	a.	Discuss how binary trees are represented using : i) Assay ii) Linked list.	6	L2	CO4
- Anger	b.	Define Threaded binary tree. Discuss In – threaded binary tree.	6	L2	CO4
e - g	c.	Write the C function for the following additional list operation : i) Inverting Singly linked list ii) Concatenating Singly linked list.	8	L3	CO3
	1	OR			
Q.6	a.	Discuss Inorder, Preorder, Postorder and Level order traversal with suitable function for each.	8	L3	CO4
	b.	Define the threaded binary tree, Construct threaded binary tree for the following element : A, B, C, DAE, F, G, H, I.	6	L2	CO4
L	c.	 Write a C function for the following : i) Insert a node at the beginning of doubly linked list; ii) Deleting a node at the end of the doubly linked list. 	6	L3	CO:
1 105		Module – 4		- And	11
Q.7	a.	Define Forest, Transform the forest into a binary tree and traverse using inorder, preorder and postorder traversal with an example.	8	L1	CO
	b.	Define Binary search tree. Construct a binary search tree for the following clements: 100, 85, 45, 55, 120, 20, 70, 90, 115, 65, 130, 145.	6	L2	CO
Section 18	c.	Discuss Selection tree with an example.	6	L2	CO
	a for		14-2	the second	in the
	24.72	OR	all of the	275	
Q.8	a.	Define Graph. Explain adjacency matrix and adjacency list representation with an example,	8	L2	CO
a di	b.	Define the following terminology with example : i) Digraph ii) Weighted graph iii) Self loop iv) Connected graph.	6	L2	CO
-	c.	Briefly explain about Elementary graph operations	6	L3	CO
		Module – 5	T	1.0	Tro
Q.9	a	Explain in detail about Static and Dynamic Hashing.	0	L2	0
	b.	What is Collision? What are the methods to resolve collision?	7	L2	co
	c.	Explain Priority queue with the help of an examples.	7	L2	CO
. <u>A</u>	979 S.	OR		1	
Q.10	ย.	Define Hashing. Explain different hashing functions with suitable examples.	12	1.2	CO
d.	b.	Write short note on : i) Leftist trees ii) Optimal binary search tree.	8	L3	CO
(the second	ل	****			.fitt
		2 of 2			
		No. 1 States of the second sec			
	1				
	mai				

Third Semester B.E./B.Tech. Degree Examination, Dec.2024/Jan.2025 Object Oriented Programming with JAVA

Time: 3 hrs.

R. THI

Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. M : Marks , L: Bloom's level , C: Course outcomes.

		Module – 1	Μ	L	С
Q.1	a.	List and explain any three features of object oriented programming.	6	L1	CO1
	b.	What do you mean by type conversion and type casting? Give examples.	8	L2	C01
	c.	How to declare and initialize 1-D and 2-D arrays in Java. Give examples.	6	L2	CO1
		OR			
Q.2	a.	List the short circuit operators and show the concept using few examples.	4	L2	CO1
	b.	With a java program, illustrate the use of ternary operator to find the greatest of three numbers.	6	L3	CO1
	c.	Develop a Java program to demonstrate the working of for each version of for loop. Initialize the 2D array with values and print them using for each.	10	L2	CO1
		Module – 2			
Q.3	a.	Develop a program in Java to implement a stack of integers.	12	L3	CO2
	b.	What are constructors? Give the types and explain the properties of constructors. Support with appropriate examples.	8	L2	CO2
		OR			
Q.4	a.	Illustrate with an example program to pass objects as arguments.	10	L2	CO2
	b.	Explain different access specifies in Java with example program.	10	L2	CO2
		Module – 3		•	
Q.5	a.	Define inheritance. List and explain different types of inheritance in Java with code snippets.	10	L2	CO3
	b.	Compare and contrast between overloading and overriding in Java with example program for each.	10	L2	CO3
	1	OR			
Q.6	a.	Analyze an interface in Java and list out the speed of an interface. Illustrate with the help of a program the importance of an interface.	10	L2	CO3
	b.	List the different uses of final and demonstrate each with the of code snippets.	10	L2	CO3
	1	1 of 2	1	1	

BCS306A

Q.7				
V•1	0	Iviouule – 4 Define a nackage Explain how to create user defined markage with	7	12
	a.	example.	/	
	h	Discuss about execution handling in Java Cive the frequency of the	0	12
	D.	exception handling block. List the types of exception.	0	
	c.	Develop a Java program to raise a custom exception for division by zero	5	L3
		using try, catch, throw and finally.		
		OR		1
Q.8	a.	Compare throw and throws keyword by providing suitable example program.	10	L2
	b.	Explain about the need for finally block.	5	L2
	c.	Discuss about chained exceptions.	5	L2
		Module – 5		
Q.9	a.	Define thread. Demonstrate creation of multiple threads with a program.	10	L2
	b.	Explain the two ways in which Java threads can be instantiated. Support	10	L2
		your explanation with a sample program.		
		OR	•	•
Q.10	a.	What is enumeration? Explain the methods values() and valueof().	10	L2
	b.	Explain about type wrappers and auto boxing.	10	L2
		* * * * *		
	An.	Rent Rent Rent Rent Rent Rent Rent Rent		