

 MODULE 1 INTRODUCTION TO PYTHON

CHAPTER 1

BASICS OF PYTHON

Python is a very popular general-purpose interpreted, interactive, object-oriented,

and high-level programming language. Python is dynamically-typed and

garbage-collected programming language. It was created by Guido van Rossum

during 1985- 1990. Like Perl, Python source code is also available under the GNU

General Public License (GPL).

Python supports multiple programming paradigms, including Procedural, Object

Oriented and Functional programming language. Python design philosophy

emphasizes code readability with the use of significant indentation.

Why to Learn Python?

Python is consistently rated as one of the world's most popular programming

languages. Python is fairly easy to learn, so if you are starting to learn any

programming language then Python could be your great choice. Today various

Schools, Colleges and Universities are teaching Python as their primary

programming language. There are many other good reasons which makes Python

as the top choice of any programmer:

 Python is Open Source which means its available free of cost.

 Python is simple and so easy to learn

 Python is versatile and can be used to create many different things.

 Python has powerful development libraries include AI, ML etc.

 Python is much in demand and ensures high salary

Python is a MUST for students and working professionals to become a great

Software Engineer specially when they are working in Web Development

Domain. I will list down some of the key advantages of learning Python:

 Python is Interpreted − Python is processed at runtime by the

interpreter. You do not need to compile your program before executing it.

This is similar to PERL and PHP.

 Python is Interactive − You can actually sit at a Python prompt and

interact with the interpreter directly to write your programs.

 Python is Object-Oriented − Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

 Python is a Beginner's Language − Python is a great language for the

beginner-level programmers and supports the development of a wide

range of applications from simple text processing to WWW browsers to

games.

Python Online Compiler/Interpreter

Python Online Compiler/Interpreter are available which helps us

to Edit and Execute the code directly from the browser.

Careers with Python

If you know Python nicely, then you have a great career ahead. Here are just a

few of the career options where Python is a key skill:

 Game developer

 Web designer

 Python developer

 Full-stack developer

 Machine learning engineer

 Data scientist

 Data analyst

 Data engineer

 DevOps engineer

 Software engineer

 Many more other roles

Characteristics of Python

Following are important characteristics of Python Programming −

 It supports functional and structured programming methods as well as

OOP.

 It can be used as a scripting language or can be compiled to byte-code for

building large applications.

 It provides very high-level dynamic data types and supports dynamic type

checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA, and

Java.

Applications of Python

The latest release of Python is 3.x. As mentioned before, Python is one of the

most widely used language over the web.

 Easy-to-learn − Python has few keywords, simple structure, and a

clearly defined syntax. This allows the student to pick up the language

quickly.

 Easy-to-read − Python code is more clearly defined and visible to the

eyes.

 Easy-to-maintain − Python's source code is fairly easy-to-maintain.

 A broad standard library − Python's bulk of the library is very portable

and cross-platform compatible on UNIX, Windows, and Macintosh.

 Interactive Mode − Python has support for an interactive mode which

allows interactive testing and debugging of snippets of code.

 Portable − Python can run on a wide variety of hardware platforms and

has the same interface on all platforms.

 Extendable − You can add low-level modules to the Python interpreter.

These modules enable programmers to add to or customize their tools to

be more efficient.

 Databases − Python provides interfaces to all major commercial

databases.

 GUI Programming − Python supports GUI applications that can be

created and ported to many system calls, libraries and windows systems,

such as Windows MFC, Macintosh, and the X Window system of Unix.

 Scalable − Python provides a better structure and support for large

programs than shell scripting.

History of Python

Python was developed by Guido van Rossum in the late eighties and early nineties

at the National Research Institute for Mathematics and Computer Science in the

Netherlands.

Python is derived from many other languages, including ABC, Modula-3, C,

C++, Algol-68, SmallTalk, and Unix shell and other scripting languages.

Python is copyrighted. Like Perl, Python source code is now available under the

GNU General Public License (GPL).

Python has a big list of good features, few are listed below −

 It supports functional and structured programming methods as well

as OOP.

 It can be used as a scripting language or can be compiled to byte-

code for building large applications.

 It provides very high-level dynamic data types and supports dynamic

type checking.

 It supports automatic garbage collection.

 It can be easily integrated with C, C++, COM, ActiveX, CORBA,

and Java.

Getting Python

The most up-to-date and current source code, binaries, documentation, news, etc.,

is available on the official website of Python https://www.python.org/

You can download Python documentation from https://www.python.org/doc/.

The documentation is available in HTML, PDF, and PostScript formats.

STARTING IDLE

This book uses Mu as an editor and interactive shell. However, you can use any

number of editors for writing Python code. The Integrated Development and

Learning Environment (IDLE) software installs along with Python, and it can

serve as a second editor.

 On Windows 7 or later, click the Start icon in the lower-left corner of your

screen, enter IDLE in the search box, and select IDLE (Python GUI).

 On macOS, open the Finder window, click Applications, click Python

3.8, and then click the IDLE icon.

 On Ubuntu, select Applications ▸ Accessories ▸ Terminal and then

enter idle3. (You may also be able to click Applications at the top of the

screen, select Programming, and then click IDLE 3.)

THE INTERACTIVE SHELL

When you run Mu, the window that appears is called the file editor window. You

can open the interactive shell by clicking the REPL button. A shell is a program

that lets you type instructions into the computer, much like the Terminal or

Command Prompt on macOS and Windows, respectively. Python’s interactive

shell lets you enter instructions for the Python interpreter software to run. The

computer reads the instructions you enter and runs them immediately.

For example, enter the following into the interactive shell next to the prompt:

>>> print('Hello, world!')

https://www.python.org/
https://www.python.org/doc/

After you type that line and press ENTER, the interactive shell should display

this in response:

>>> print('Hello, world!')

Hello, world!

ENTERING EXPRESSIONS INTO THE INTERACTIVE SHELL

On Windows, open the Start menu, type “Mu,” and open the Mu app. On macOS,

open your Applications folder and double-click Mu. Click the New button and

save an empty file as blank.py. When you run this blank file by clicking

the Run button or pressing F5, it will open the interactive shell, which will open

as a new pane that opens at the bottom of the Mu editor’s window. You should

see a >>> prompt in the interactive shell.

Enter 2 + 2 at the prompt to have Python do some simple math. The Mu

window should now look like this:

>>> 2 + 2

4

>>>

In Python, 2 + 2 is called an expression, which is the most basic kind of

programming instruction in the language. Expressions consist of values (such

as 2) and operators (such as +), and they can always evaluate (that is, reduce)

down to a single value.

A single value with no operators is also considered an expression, though it

evaluates only to itself, as shown here:

>>> 2

2

We can use plenty of other operators in Python expressions, too. For

example, Table 1-1 lists all the math operators in Python.

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1652

Table 1-1: Math Operators from Highest to Lowest Precedence

Operator Operation Example Evaluates to . . .

** Exponent 2 ** 3 8

% Modulus/remainder 22 % 8 6

// Integer division

/floored quotient

22 // 8 2

/ Division 22 / 8 2.75

* Multiplication 3 * 5 15

- Subtraction 5 - 2 3

+ Addition 2 + 2 4

The order of operations (also called precedence) of Python math operators is

similar to that of mathematics. The ** operator is evaluated first; the *, /, //,

and % operators are evaluated next, from left to right; and the + and - operators

are evaluated last (also from left to right). You can use parentheses to override

the usual precedence if you need to.

Enter the following expressions into the interactive shell:

>>> 2 + 3 * 6

20

>>> (2 + 3) * 6

30

>>> 48565878 * 578453

28093077826734

>>> 2 ** 8

256

>>> 23 / 7

3.2857142857142856

>>> 23 // 7

3

>>> 23 % 7

2

>>> 2 + 2

4

>>> (5 - 1) * ((7 + 1) / (3 - 1))

16.0

Python will keep evaluating parts of the expression until it becomes a single

value, as shown here:

If we enter a bad Python instruction, Python won’t be able to understand it and

will display a Syntax Error message, as shown here:

>>> 5 +

File "<stdin>", line 1

5 +

^

SyntaxError: invalid syntax

>>> 42 + 5 + * 2

File "<stdin>", line 1

42 + 5 + * 2

^

SyntaxError: invalid syntax

THE INTEGER, FLOATING-POINT, AND STRING DATA TYPES

A data type is a category for values, and every value belongs to exactly one data

type. The most common data types in Python are listed in Table 1-2. The values -

2 and 30, for example, are said to be integer values. The integer (or int) data type

indicates values that are whole numbers. Numbers with a decimal point, such

as 3.14, are called floating-point numbers (or floats). Note that even though the

value 42 is an integer, the value 42.0 would be a floating-point number.

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1653

Table 1-2: Common Data Types

Data type Examples

Integers -2, -1, 0, 1, 2, 3, 4, 5

Floating-point numbers -1.25, -1.0, -0.5, 0.0, 0.5, 1.0, 1.25

Strings 'a', 'aa', 'aaa', 'Hello!', '11 cats'

Python programs can also have text values called strings, or strs (pronounced

“stirs”). Always surround your string in single quote (') characters or double quote

(“) (as in 'Hello' or “Goodbye cruel world!”) so Python knows where the string

begins and ends. You can even have a string with no characters in it, '', called

a blank string or an empty string.

If you ever see the error message SyntaxError: EOL while scanning string literal,

you probably forgot the final single quote character at the end of the string, such

as in this example:

>>> 'Hello, world!

SyntaxError: EOL while scanning string literal

STRING CONCATENATION AND REPLICATION

The meaning of an operator may change based on the data types of the values

next to it. For example, + is the addition operator when it operates on two integers

or floating-point values. However, when + is used on two string values, it joins

the strings as the string concatenation operator. Enter the following into the

interactive shell:

>>> 'Alice' + 'Bob'

'AliceBob'

The expression evaluates down to a single, new string value that combines the

text of the two strings. However, if you try to use the + operator on a string and

an integer value, Python will not know how to handle this, and it will display an

error message.

>>> 'Alice' + 42

Traceback (most recent call last):

File "<pyshell#0>", line 1, in <module>

'Alice' + 42

TypeError: can only concatenate str (not "int") to str

The error message can only concatenate str (not "int") to str means that Python

thought you were trying to concatenate an integer to the string 'Alice'.

The * operator multiplies two integer or floating-point values. But when

the * operator is used on one string value and one integer value, it becomes

the string replication operator. Enter a string multiplied by a number into the

interactive shell to see this in action.

>>> 'Alice' * 5

'AliceAliceAliceAliceAlice'

The expression evaluates down to a single string value that repeats the original

string a number of times equal to the integer value.

The * operator can be used with only two numeric values (for multiplication),

or one string value and one integer value (for string replication). Otherwise,

Python will just display an error message, like the following:

>>> 'Alice' * 'Bob'

Traceback (most recent call last):

File "<pyshell#32>", line 1, in <module>

'Alice' * 'Bob'

TypeError: can't multiply sequence by non-int of type 'str'

>>> 'Alice' * 5.0

Traceback (most recent call last):

File "<pyshell#33>", line 1, in <module>

'Alice' * 5.0

TypeError: can't multiply sequence by non-int of type 'float'

STORING VALUES IN VARIABLES

A variable is like a box in the computer’s memory where you can store a single

value.

Assignment Statements

An assignment statement consists of a variable name, an equal sign (called

the assignment operator), and the value to be stored. If you enter the assignment

statement spam = 42, then a variable named spam will have the integer

value 42 stored in it.

Think of a variable as a labeled box that a value is placed in, as in Figure 1-1.

Figure 1-1: spam = 42 is like telling the program, “The variable spam now has

the integer value 42 in it.”

For example, enter the following into the interactive shell:

➊ >>> spam = 40

>>> spam

40

>>> eggs = 2

➋ >>> spam + eggs

42

>>> spam + eggs + spam

82

➌ >>> spam = spam + 2

>>> spam

42

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1654

A variable is initialized (or created) the first time a value is stored in it ➊. After

that, you can use it in expressions with other variables and values ➋. When a

variable is assigned a new value ➌, the old value is forgotten, which is

why spam evaluated to 42 instead of 40 at the end of the example. This is

called overwriting the variable. Enter the following code into the interactive shell

to try overwriting a string:

>>> spam = 'Hello'

>>> spam

'Hello'

>>> spam = 'Goodbye'

>>> spam

'Goodbye'

Figure 1-2: When a new value is assigned to a variable, the old one is

forgotten.

Variable Names

A good variable name describes the data it contains. Though you can name your

variables almost anything, Python does have some naming restrictions. Table 1-

3 has examples of legal variable names. You can name a variable anything as

long as it obeys the following three rules:

 It can be only one word with no spaces.

 It can use only letters, numbers, and the underscore (_) character.

 It can’t begin with a number.

Table 1-3: Valid and Invalid Variable Names

Valid variable names Invalid variable names

current_balance current-balance (hyphens are not allowed)

currentBalance current balance (spaces are not allowed)

account4 4account (can’t begin with a number)

_42 42 (can’t begin with a number)

TOTAL_SUM TOTAL_$UM (special characters like $ are not allowed)

hello 'hello' (special characters like ' are not allowed)

Variable names are case-sensitive, meaning that spam, SPAM, Spam,

and sPaM are four different variables. Though Spam is a valid variable you can

use in a program, it is a Python convention to start your variables with a lowercase

letter.

Python uses camelcase for variable names instead of underscores; that is,

variables lookLikeThis instead of looking_like_this.

The file editor lets you type in many instructions, save the file, and run the

program. Here’s how you can tell the difference between the two:

 The interactive shell window will always be the one with the >>> prompt.

 The file editor window will not have the >>> prompt.

 When the file editor window opens, enter the following into it:

 ➊ # This program says hello and asks for my name.

https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1656
https://automatetheboringstuff.com/2e/chapter1/#calibre_link-1656

➋ print('Hello, world!')

print('What is your name?') # ask for their name

➌ myName = input()

➍ print('It is good to meet you, ' + myName)

➎ print('The length of your name is:')

print(len(myName))

➏ print('What is your age?') # ask for their age

myAge = input()

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

The program’s output in the interactive shell should look something like this:

Python 3.7.0b4 (v3.7.0b4:eb96c37699, May 2 2018, 19:02:22) [MSC

v.1913 64 bit

(AMD64)] on win32

Type "copyright", "credits" or "license()" for more information.

>>> ================================ RESTART

================================

>>>

Hello, world!

What is your name?

Al

It is good to meet you, Al

The length of your name is:

2

What is your age?

4

You will be 5 in a year.

>>>

Comments

The following line is called a comment.

➊ # This program says hello and asks for my name.

Python ignores comments, and you can use them to write notes or remind

yourself what the code is trying to do. Any text for the rest of the line following

a hash mark (#) is part of a comment.

The print() Function

The print() function displays the string value inside its parentheses on the screen.

➋ print('Hello, world!')

print('What is your name?') # ask for their name

The line print('Hello, world!') means “Print out the text in the string 'Hello,

world!'.” When Python executes this line, you say that Python

is calling the print() function and the string value is being passed to the function.

A value that is passed to a function call is an argument.

The input() Function

The input() function waits for the user to type some text on the keyboard and

press ENTER.

➌ myName = input()

This function call evaluates to a string equal to the user’s text, and the line of

code assigns the myName variable to this string value.

You can think of the input() function call as an expression that evaluates to

whatever string the user typed in. If the user entered 'Al', then the expression

would evaluate to myName = 'Al'.

Printing the User’s Name

The following call to print() actually contains the expression 'It is good to meet

you, ' + myName between the parentheses.

➍ print('It is good to meet you, ' + myName)

Remember that expressions can always evaluate to a single value. If 'Al' is the

value stored in myName on line ➌, then this expression evaluates to 'It is good to

meet you, Al'. This single string value is then passed to print(), which prints it on

the screen.

The len() Function

You can pass the len() function a string value (or a variable containing a string),

and the function evaluates to the integer value of the number of characters in that

string.

➎ print('The length of your name is:')

print(len(myName))

Enter the following into the interactive shell to try this:

>>> len('hello')

5

>>> len('My very energetic monster just scarfed nachos.')

46

>>> len('')

0

len(myName) evaluates to an integer. It is then passed to print() to be

displayed on the screen. The print() function allows you to pass it either integer

values or string values, but notice the error that shows up when you type the

following into the interactive shell:

>>> print('I am ' + 29 + ' years old.')

Traceback (most recent call last):

File "<pyshell#6>", line 1, in <module>

print('I am ' + 29 + ' years old.')

TypeError: can only concatenate str (not "int") to str

The print() function isn’t causing that error, but rather it’s the expression you

tried to pass to print(). You get the same error message if you type the expression

into the interactive shell on its own.

>>> 'I am ' + 29 + ' years old.'

Traceback (most recent call last):

File "<pyshell#7>", line 1, in <module>

'I am ' + 29 + ' years old.'

TypeError: can only concatenate str (not "int") to str

Python gives an error because the + operator can only be used to add two

integers together or concatenate two strings. You can’t add an integer to a string,

because this is ungrammatical in Python.

The str(), int(), and float() Functions

If you want to concatenate an integer such as 29 with a string to pass to print(),

you’ll need to get the value '29', which is the string form of 29. The str() function

can be passed an integer value and will evaluate to a string value version of the

integer, as follows:

>>> str(29)

'29'

>>> print('I am ' + str(29) + ' years old.')

I am 29 years old.

Because str(29) evaluates to '29', the expression 'I am ' + str(29) + ' years

old.' evaluates to 'I am ' + '29' + ' years old.', which in turn evaluates to 'I am 29

years old.'. This is the value that is passed to the print() function.

The str(), int(), and float() functions will evaluate to the string, integer, and

floating-point forms of the value you pass, respectively.

>>> str(0)

'0'

>>> str(-3.14)

'-3.14'

>>> int('42')

42

>>> int('-99')

-99

>>> int(1.25)

1

>>> int(1.99)

1

>>> float('3.14')

3.14

>>> float(10)

10.0

>>> spam = input()

101

>>> spam

'101'

>>> spam = int(spam)

>>> spam

101

>>> spam * 10 / 5

202.0

Note that if you pass a value to int() that it cannot evaluate as an integer,

Python will display an error message.

>>> int('99.99')

Traceback (most recent call last):

File "<pyshell#18>", line 1, in <module>

int('99.99')

ValueError: invalid literal for int() with base 10: '99.99'

>>> int('twelve')

Traceback (most recent call last):

File "<pyshell#19>", line 1, in <module>

int('twelve')

ValueError: invalid literal for int() with base 10: 'twelve'

The int() function is also useful if you need to round a floating-point number

down.

>>> int(7.7)

7

>>> int(7.7) + 1

8

print('What is your age?') # ask for their age

myAge = input()

print('You will be ' + str(int(myAge) + 1) + ' in a year.')

These evaluation steps would look something like the following:

 MODULE 1- CHAPTER 2

FLOW CONTROL

Based on how expressions evaluate, a program can decide to skip instructions,

repeat them, or choose one of several instructions to run. In fact, you almost never

want your programs to start from the first line of code and simply execute every

line, straight to the end. Flow control statements can decide which Python

instructions to execute under which conditions.

BOOLEAN VALUES

The Boolean data type has only two values: True and False. (Boolean is

capitalized because the data type is named after mathematician George Boole.)

When entered as Python code, the Boolean values True and False lack the quotes

you place around strings.

>>> spam = True

>>> spam

True

➋ >>> true

Traceback (most recent call last):

File “<pyshell#2>”, line 1, in <module>

true

NameError: name ‘true’ is not defined

➌ >>> True = 2 + 2

SyntaxError: can’t assign to keyword

COMPARISON OPERATORS

Comparison operators, also called relational operators, compare two values and

evaluate down to a single Boolean value. Table 2-1 lists the comparison

operators.

Table 2-1: Comparison Operators

Operator Meaning

== Equal to

!= Not equal to

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

>>> 42 == 42

True

>>> 42 == 99

False

>>> 2 != 3

True

>>> 2 != 2

False

>>> ‘hello’ ==

‘hello’ True

>>> ‘hello’ ==

‘Hello’ False

>>> ‘dog’ != ‘cat’

https://automatetheboringstuff.com/2e/chapter2/#calibre_link-1534

True

>>> True == True

True

>>> True != False

True

>>> 42 == 42.0

True

➊ >>> 42 == ‘42’

False

>>> 42 < 100

True

>>> 42 > 100

False

>>> 42 < 42

False

>>> eggCount = 42

➊ >>> eggCount <= 42

True

>>> myAge = 29

➋ >>> myAge >= 10

True

Boolean Operators

The three Boolean operators (and, or, and not) are used to compare Boolean

values. Like comparison operators, they evaluate these expressions down to a

Boolean value.

Binary Boolean Operators

The and and or operators always take two Boolean values (or expressions), so

they’re considered binary operators. The and operator evaluates an expression

to True if both Boolean values are True; otherwise, it evaluates to False.

>>> True and True

True

>>> True and False

False

Table 2-2: The and Operator’s Truth Table

Expression Evaluates to . . .

True and True True

Expression Evaluates to . . .

True and False False

False and True False

False and False False

On the other hand, the or operator evaluates an expression to True if either of the

two Boolean values is True. If both are False, it evaluates to False.

>>> False or True

True

>>> False or False

False

Table 2-3: The or Operator’s Truth Table

Expression Evaluates to . . .

True or True True

True or False True

False or True True

False or False False

The not Operator

Unlike and and or, the not operator operates on only one Boolean value (or

expression). This makes it a unary operator. The not operator simply evaluates to

the opposite Boolean value.

>>> not True

False

➊ >>> not not not not True

True

>>> not True

False

➊ >>> not not not not True

True

Mixing Boolean and Comparison Operators

Since the comparison operators evaluate to Boolean values, you can use them in

expressions with the Boolean operators.

>>> (4 < 5) and (5 < 6)

True

>>> (4 < 5) and (9 < 6)

False

>>> (1 == 2) or (2 == 2)

True

The computer will evaluate the left expression first, and then it will evaluate the

right expression. When it knows the Boolean value for each, it will then evaluate

the whole expression down to one Boolean value. You can think of the

computer’s evaluation process for (4 < 5) and (5 < 6) as the following:

>>> 2 + 2 == 4 and not 2 + 2 == 5 and 2 * 2 == 2 + 2

True

Elements of Flow Control

Flow control statements often start with a part called the condition and are always

followed by a block of code called the clause.

Conditions

Condition is just a more specific name in the context of flow control statements.

Conditions always evaluate down to a Boolean value, True or False. A flow

control statement decides what to do based on whether its condition

is True or False, and almost every flow control statement uses a condition.

Blocks of Code

Lines of Python code can be grouped together in blocks. You can tell when a

block begins and ends from the indentation of the lines of code. There are three

rules for blocks.

 Blocks begin when the indentation increases.

 Blocks can contain other blocks.

 Blocks end when the indentation decreases to zero or to a containing

block’s indentation.

Name = ‘Mary’

password =

‘swordfish’ if name ==

‘Mary’:

➊ print(‘Hello, Mary’)

if password == ‘swordfish’:

➋ print(‘Access

granted.’) else:

➌ print(‘Wrong password.’)

Flow Control Statements

if Statements

The most common type of flow control statement is the if statement.

An if statement’s clause (that is, the block following the if statement) will

execute if the statement’s condition is True. The clause is skipped if the condition

is False.

In Python, an if statement consists of the following:

 The if keyword

 A condition (that is, an expression that evaluates to True or False)

 A colon

Starting on the next line, an indented block of code (called the if clause)

if name == ‘Alice’:

print(‘Hi, Alice.’)

else Statements

An if clause can optionally be followed by an else statement. The else clause is

executed only when the if statement’s condition is False. In plain English,

an else statement could be read as, “If this condition is true, execute this code. Or

else, execute that code.” An else statement doesn’t have a condition, and in code,

an else statement always consists of the following:

 The else keyword

 A colon

Starting on the next line, an indented block of code (called the else clause)

if name == ‘Alice’:

print(‘Hi,

Alice.’)

else:

print(‘Hello, stranger.’)

elif Statements

The elif statement is an “else if” statement that always follows an if or

another elif statement. It provides another condition that is checked only if all of

the previous conditions were False. In code, an elif statement always consists of

the following:

The elif keyword

A condition (that is, an expression that evaluates to True or False)

A colon

Starting on the next line, an indented block of code (called the elif clause)

Let’s add an elif to the name checker to see this statement in action.

If name==’Alice’:

 print(‘Hi,Alice.’)

elif age<12:

print(‘You are not Alice, kiddo.’)

Figure 2-4: The flowchart for an elif statement

name=’Carol’

age=3000

if name==’Alice’:

 print(‘Hi,Alice.’)

elif age<12:

print(‘You are not Alice,kiddo.’)

elif age>2000:

print(‘Unlike you, Alice is not an undead, immortal

 vampire.’) elif age>100:

print(‘You are not Alice, grannie.’)

name=’Carol’

age=3000

if name==’Alice’:

 print(‘Hi,Alice.’)

elif age<12:

print(‘You are not Alice, kiddo.’)

 else:

print(‘You are neither Alice nor a little kid.’)

while Loop Statements

The code in a while clause will be executed as long as the while statement’s

condition is True. In code, a while statement always consists of the following:

The while keyword

A condition (that is, an expression that evaluates to True or False)

A colon

Starting on the next line, an indented block of code (called the while clause)

At the end of an if clause, the program execution continues after the if statement.

But at the end of a while clause, the program execution jumps back to the start of

the while statement. The while clause is often called the while loop or just

the loop.

Spam=0

if spam<5:

print(‘Hello,world.’)

spam = spam + 1

Here is the code with a while statement:

spam=0

while spam<5:

print(‘Hello,world.’)

spam = spam + 1

Figure 2-8: The flowchart for the if statement code

Figure 2-9: The flowchart for the while statement code

An Annoying while Loop

➊ name=””

➋ while name!=’your name’:

print(‘Please type your name.’)

➌ name=input()

➍ print(‘Thank you!’)

break Statements

There is a shortcut to getting the program execution to break out of a while loop’s

clause early. If the execution reaches a break statement, it immediately exits

the while loop’s clause. In code, a break statement simply contains

the break keyword.

WhileTrue:

print(‘Please type your name.’)

➋ name=input()

➌ if name==’yourname’:

➍ break

➎ print(‘Thank you!’)

Figure 2-11: The flowchart for the yourName2.py program with an infinite loop.

Note that the X path will logically never happen, because the loop condition is

always True.

Continue Statements

Like break statements, continue statements are used inside loops. When the

program execution reaches a continue statement, the program execution

immediately jumps back to the start of the loop and reevaluates the loop’s

condition.

While True:

print(‘Who are you?’)

name=input()

➊ if name!=’Joe’:

➋ continue

 print(‘Hello,Joe.What is the password? (Itisafish.)’)

➌ password=input()

 if password ==’swordfish’:

➍ break

➎ print(‘Access granted.’)

Figure 2-12: A flowchart for swordfish.py. The X path will logically never

happen, because the loop condition is always True.

For Loops and the range() Function

The while loop keeps looping while its condition is True (which is the reason for

its name), but what if you want to execute a block of code only a certain number

of times? You can do this with a for loop statement and the range() function.

In code, a for statement looks something like for i in range(5): and includes the

following:

 The for keyword

 A variable name

 The in keyword

 A call to the range() method with up to three integers passed to it

 A colon

Starting on the next line, an indented block of code (called the for clause)

A function is like a miniprogram within a program.

A major purpose of functions is to group code that gets executed multiple times.

Def hello():

 ➋ print(‘Howdy!’)

 print(‘Howdy!!!’)

 print(‘Hello there.’)

➌ hello()

 hello()

 hello()

print(‘My name

is’) for i in

range(5):

print(‘Jimmy Five Times (‘ + str(i) +

‘)’) My name is

Jimmy Five Times (0)
Jimmy Five Times (1)

Jimmy Five Times (2)

Jimmy Five Times (3)

Jimmy Five Times (4)

Figure 2-13: The flowchart for fiveTimes.py

total = 0

➋ for num in range(101):

DEF STATEMENTS WITH PARAMETERS

➌ total = total + num

➍ print(total)

print(‘My name

is’) i = 0

while i < 5:

print(‘Jimmy Five Times (‘ + str(i) +

‘)’) i = i + 1

The Starting, Stopping, and Stepping Arguments to range()

Some functions can be called with multiple arguments separated by a comma,

and range() is one of them. This lets you change the integer passed to range() to

follow any sequence of integers, including starting at a number other than zero.

For i in range(12, 16):

print(i)

The first argument will be where the for loop’s variable starts, and the second

argument will be up to, but not including, the number to stop at.

12

13

14

15

The range() function can also be called with three arguments. The first two

arguments will be the start and stop values, and the third will be the step

argument. The step is the amount that the variable is increased by after each

iteration.

For i in range(0, 10,

2): print(i)

So calling range(0, 10, 2) will count from zero to eight by intervals of two.

0

2
4

6

8

for i in range(5, -1, -1):

print(i)

This for loop would have the following output:

5

4

3

2

1

0

Importing Modules

All Python programs can call a basic set of functions called built-in functions,

including the print(), input(), and len() functions you’ve seen before. Python also

comes with a set of modules called the standard library. Each module is a Python

program that contains a related group of functions that can be embedded in your

programs. For example, the math module has mathematics-related functions,

the random module has random number-related functions, and so on

In code, an import statement consists of the following:

The import keyword

 The name of the module

 Optionally, more module names, as long as they are separated by commas

 Once you import a module, you can use all the cool functions of that

module.

Import random

for i in range(5):

print(random.randint(1, 10))

When you run this program, the output will look something like this:

4

1
8

4

1

import random, sys, os, math

Now we can use any of the functions in these four modules.

From import Statements

An alternative form of the import statement is composed of the from keyword,

followed by the module name, the import keyword, and a star; for example, from

random import *.

With this form of import statement, calls to functions in random will not need

the random. Prefix.

Ending a Program Early with the sys.exit() Function

We can cause the program to terminate, or exit, before the last instruction by

calling the sys.exit() function. Since this function is in the sys module, you have

to import sys before your program can use it.

Import sys

while True:

print(‘Type exit to

exit.’) response = input()

if response ==

‘exit’: sys.exit()

print(‘You typed ‘ + response + ‘.’)

MODULE 1
CHAPTER 3 FUNCTIONS

A function is like a mini program within a program.

def hello():

➋ print('Howdy!')

print('Howdy!!!')

print('Hello there.')

➌ hello()

hello()

hello()

When you run this program, the output looks like this:

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

Hello there.

Howdy!

Howdy!!!

Hello there.

DEF STATEMENTS WITH PARAMETERS

When we call the print() or len() function, we pass them values,

called arguments, by typing them between the parentheses.

def hello(name):

➋ print('Hello, ' + name)

➌ hello('Alice')

hello('Bob')

When you run this program, the output looks like this:

Hello, Alice

Hello, Bob

RETURN VALUES AND RETURN STATEMENTS

When we call the len() function and pass it an argument such as 'Hello', the

function call evaluates to the integer value 5, which is the length of the string we

passed it. In general, the value that a function call evaluates to is called the return

value of the function.

When creating a function using the def statement, we can specify what the

return value should be with a return statement. A return statement consists of the

following:

 The return keyword

 The value or expression that the function should return

When an expression is used with a return statement, the return value is what

this expression evaluates to.

import random

➋ def getAnswer(answerNumber):

➌ if answerNumber == 1:

return 'It is certain'

elif answerNumber == 2:

return 'It is decidedly so'

elif answerNumber == 3:

return 'Yes'

elif answerNumber == 4:

return 'Reply hazy try again'

elif answerNumber == 5:

return 'Ask again later'

elif answerNumber == 6:

return 'Concentrate and ask again'

elif answerNumber == 7:

return 'My reply is no'

elif answerNumber == 8:

return 'Outlook not so good'

elif answerNumber == 9:

return 'Very doubtful'

➍ r = random.randint(1, 9)

➎ fortune = getAnswer(r)

➏ print(fortune)

THE NONE VALUE

In Python, there is a value called None, which represents the absence of a value.

The None value is the only value of the NoneType data type. Just like the

Boolean True and False values, None must be typed with a capital N.

spam = print('Hello!')

Hello!

>>> None == spam

True

KEYWORD ARGUMENTS AND THE PRINT() FUNCTION

Most arguments are identified by their position in the function call. For

example, random.randint(1, 10) is different from random.randint(10, 1). The

function call random.randint(1, 10) will return a random integer

between 1 and 10 because the first argument is the low end of the range and the

second argument is the high end (while random.randint(10, 1) causes an error).

print('Hello')

print('World')

the output would look like this:

Hello

World

The two outputted strings appear on separate lines because the print() function

automatically adds a newline character to the end of the string it is passed.

However, you can set the end keyword argument to change the newline character

to a different string. For example, if the code were this:

print('Hello', end='')

print('World')

the output would look like this:

HelloWorld

Similarly, when we pass multiple string values to print(), the function will

automatically separate them with a single space. Enter the following into the

interactive shell:

>>> print('cats', 'dogs', 'mice')

cats dogs mice

But we could replace the default separating string by passing the sep keyword

argument a different string. Enter the following into the interactive shell:

>>> print('cats', 'dogs', 'mice', sep=',')

cats,dogs,mice

LOCAL AND GLOBAL SCOPE

Parameters and variables that are assigned in a called function are said to exist in

that function’s local scope. Variables that are assigned outside all functions are

said to exist in the global scope. A variable that exists in a local scope is called

a local variable, while a variable that exists in the global scope is called a global

variable. A variable must be one or the other; it cannot be both local and global.

Think of a scope as a container for variables. When a scope is destroyed, all the

values stored in the scope’s variables are forgotten. There is only one global

scope, and it is created when your program begins. When your program

terminates, the global scope is destroyed, and all its variables are forgotten.

Scopes matter for several reasons:

Code in the global scope, outside of all functions, cannot use any local variables.

However, code in a local scope can access global variables.

Code in a function’s local scope cannot use variables in any other local scope.

You can use the same name for different variables if they are in different scopes.

That is, there can be a local variable named spam and a global variable also

named spam.

The reason Python has different scopes instead of just making everything a global

variable is so that when variables are modified by the code in a particular call to

a function, the function interacts with the rest of the program only through its

parameters and the return value. This narrows down the number of lines of code

that may be causing a bug. If your program contained nothing but global variables

and had a bug because of a variable being set to a bad value, then it would be hard

to track down where this bad value was set. It could have been set from anywhere

in the program.

Local Variables Cannot Be Used in the Global Scope

Consider this program, which will cause an error when you run it:

def spam():

➊ eggs = 31337

spam()

print(eggs)

If you run this program, the output will look like this:

Traceback (most recent call last):

File "C:/test1.py", line 4, in <module>

print(eggs)

NameError: name 'eggs' is not defined

The error happens because the eggs variable exists only in the local scope created

when spam() is called ➊. Once the program execution returns from spam, that

local scope is destroyed, and there is no longer a variable named eggs.

Local Scopes Cannot Use Variables in Other Local Scopes

A new local scope is created whenever a function is called, including when a

function is called from another function. Consider this program:

def spam():

➊ eggs = 99

➋ bacon()

➌ print(eggs)

def bacon():

ham = 101

➍ eggs = 0

➎ spam()

When the program starts, the spam() function is called ➎, and a local scope is

created. The local variable eggs ➊ is set to 99. Then the bacon() function is

called ➋, and a second local scope is created. Multiple local scopes can exist at

the same time. In this new local scope, the local variable ham is set to 101, and a

local variable eggs—which is different from the one in spam()’s local scope—is

also created ➍ and set to 0.

When bacon() returns, the local scope for that call is destroyed, including

its eggs variable. The program execution continues in the spam() function to print

the value of eggs ➌. Since the local scope for the call to spam() still exists, the

only eggs variable is the spam() function’s eggs variable, which was set to 99.

This is what the program prints.

Global Variables Can Be Read from a Local Scope

Consider the following program:

def spam():

print(eggs)

eggs = 42

spam()

print(eggs)

Since there is no parameter named eggs or any code that assigns eggs a value in

the spam() function, when eggs is used in spam(), Python considers it a reference

to the global variable eggs. This is why 42 is printed.

Local and Global Variables with the Same Name

Technically, it’s perfectly acceptable to use the same variable name for a global

variable and local variables in different scopes in Python. But, to simplify your

life, avoid doing this.

def spam():

➊ eggs = 'spam local'

print(eggs) # prints 'spam local'

def bacon():

➋ eggs = 'bacon local'

print(eggs) # prints 'bacon local'

spam()

print(eggs) # prints 'bacon local'

➌ eggs = 'global'

bacon()

print(eggs) # prints 'global'

When you run this program, it outputs the following:

bacon local

spam local

bacon local

global

THE GLOBAL STATEMENT

If you need to modify a global variable from within a function, use

the global statement. If you have a line such as global eggs at the top of a

function, it tells Python, “In this function, eggs refers to the global variable, so

don’t create a local variable with this name.”

def spam():

➊ global eggs

➋ eggs = 'spam'

eggs = 'global'

spam()

print(eggs)

When you run this program, the final print() call will output this:

spam

There are four rules to tell whether a variable is in a local scope or global

scope:

 If a variable is being used in the global scope (that is, outside of all

functions), then it is always a global variable.

 If there is a global statement for that variable in a function, it is a global

variable.

 Otherwise, if the variable is used in an assignment statement in the

function, it is a local variable.

 But if the variable is not used in an assignment statement, it is a global

variable.

def spam():

➊ global eggs

eggs = 'spam' # this is the global

def bacon():

➋ eggs = 'bacon' # this is a local

def ham():

➌ print(eggs) # this is the global

eggs = 42 # this is the global

spam()

print(eggs)

def spam():

print(eggs) # ERROR!

➊ eggs = 'spam local'

➋ eggs = 'global'

spam()

If you run the previous program, it produces an error message.

Traceback (most recent call last):

File "C:/sameNameError.py", line 6, in <module>

spam()

File "C:/sameNameError.py", line 2, in spam

print(eggs) # ERROR!

UnboundLocalError: local variable 'eggs' referenced before assignment

EXCEPTION HANDLING

Right now, getting an error, or exception, in your Python program means the

entire program will crash. You don’t want this to happen in real-world programs.

Instead, you want the program to detect errors, handle them, and then continue to

run.

For example, consider the following program, which has a divide-by-zero

error. Open a file editor window and enter the following code, saving it

as zeroDivide.py:

def spam(divideBy):

return 42 / divideBy

print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

when you run the previous code:

21.0

3.5

Traceback (most recent call last):

File "C:/zeroDivide.py", line 6, in <module>

print(spam(0))

File "C:/zeroDivide.py", line 2, in spam

return 42 / divideBy

ZeroDivisionError: division by zero

Errors can be handled with try and except statements. The code that could

potentially have an error is put in a try clause. The program execution moves to

the start of a following except clause if an error happens.

You can put the previous divide-by-zero code in a try clause and have

an except clause contain code to handle what happens when this error occurs.

def spam(divideBy):

try:

return 42 / divideBy

except ZeroDivisionError:

print('Error: Invalid argument.')

print(spam(2))

print(spam(12))

print(spam(0))

print(spam(1))

When code in a try clause causes an error, the program execution immediately

moves to the code in the except clause. After running that code, the execution

continues as normal. The output of the previous program is as follows:

21.0

3.5

Error: Invalid argument.

None

42.0

A SHORT PROGRAM: GUESS THE NUMBER

This is a guess the number game.

import random

secretNumber = random.randint(1, 20)

print('I am thinking of a number between 1 and 20.')

Ask the player to guess 6 times.

for guessesTaken in range(1, 7):

print('Take a guess.')

guess = int(input())

if guess < secretNumber:

print('Your guess is too low.')

elif guess > secretNumber:

print('Your guess is too high.')

else:

break # This condition is the correct guess!

if guess == secretNumber:

print('Good job! You guessed my number in ' + str(guessesTaken) + '

guesses!')

else:

print('Nope. The number I was thinking of was ' + str(secretNumber))

I am thinking of a number between 1 and 20.

Take a guess.

10

Your guess is too low.

Take a guess.

15

Your guess is too low.

Take a guess.

17

Your guess is too high.

Take a guess.

16

Good job! You guessed my number in 4 guesses!

MODULE-2 CHAPTER 1: LISTS

1. The List Data Type

2. Working with Lists

3. Augmented Assignment Operators

4. Methods

5. Example Program: Magic 8 Ball with a List

6. List-like Types: Strings and Tuples

7. References

The List Data Type

 A list is a value that contains multiple values in an ordered sequence.

 A list value looks like this: ['cat', 'bat', 'rat', 'elephant'].

 A list begins with an opening square bracket and ends with a closing square bracket, [].

 Values inside the list are also called items and are separated with commas.

 The spam variable ❶ is still assigned only one value: the list value(contains multiple values).

 The value [] is an empty list that contains no values, similar to '', the empty string.

Getting Individual Values in a List with Indexes

 Say you have the list ['cat', 'bat', 'rat', 'elephant'] stored in a variable named spam.

 The Python code spam[0] would evaluate to 'cat', and spam[1] would evaluate to 'bat', and so on.

 The first value in the list is at index 0, the second value is at index 1, and the third value is at index

2, and so on.

 For example, type the following expressions into the interactive shell.

 The expression 'Hello ' + spam[0] evaluates to 'Hello ' + 'cat' because spam[0] evaluates to the

string 'cat'. This expression in turn evaluates to the string value 'Hello cat'.

 If we use an index that exceeds the number of values in the list value then, python gives IndexError.

 Indexes can be only integer values, not floats. The following example will cause a TypeError error:

 Lists can also contain other list values. The values in these lists of lists can be accessed using

multiple indexes.

 The first index dictates which list value to use, and the second indicates the value within the list

value. Ex, spam[0][1] prints 'bat', the second value in the first list.

Negative Indexes

 We can also use negative integers for the index. The integer value -1 refers to the last index in a list,

the value -2 refers to the second-to-last index in a list, and so on.

Getting Sublists with Slices

 An index will get a single value from a list, a slice can get several values from a list, in the form of a

new list.

 A slice is typed between square brackets, like an index, but it has two integers separated by a colon.

 Difference between indexes and slices.

o spam[2] is a list with an index (one integer).

o spam[1:4] is a list with a slice (two integers).

 In a slice, the first integer is the index where the slice starts. The second integer is the index where

the slice ends (but will not include the value at the second index).

 As a shortcut, we can leave out one or both of the indexes on either side of the colon in the slice.

o Leaving out the first index is the same as using 0, or the beginning of the list.

o Leaving out the second index is the same as using the length of the list, which will slice to

the end of the list.

Getting a List’s Length with len()

 The len() function will return the number of values that are in a list value.

Changing Values in a List with Indexes

 We can also use an index of a list to change the value at that index. Ex: spam[1] = 'aardvark' means

“Assign the value at index 1 in the list spam to the string 'aardvark'.”

List Concatenation and List Replication

 The + operator can combine two lists to create a new list value in the same way it combines two

strings into a new string value.

 The * operator can also be used with a list and an integer value to replicate the list.

Removing Values from Lists with del Statements

 The del statement will delete values at an index in a list.

 The del statement can also be used to delete a variable After deleting if we try to use the variable,

we will get a NameError error because the variable no longer exists.

 In practice, you almost never need to delete simple variables.

 The del statement is mostly used to delete values from lists.

 Working with Lists

 When we first begin writing programs, it’s tempting to create many individual variables to store a group

of similar values.

 Which is bad way to write code because it leads to have a duplicate code in the program.

 Instead of using multiple, repetitive variables, we can use a single variable that contains a list value.

 For Ex: The following program uses a single list and it can store any number of cats that the user types

in.

 Program:

 Output:

 The benefit of using a list is that our data is now in a structure, so our program is much more flexible in

processing the data than it would be with several repetitive variables.

Using for Loops with Lists

 A for loop repeats the code block once for each value in a list or list-like value.

Program

Output:

 A common Python technique is to use range (len(someList)) with a for loop to iterate over the

indexes of a list.

 The code in the loop will access the index (as the variable i), the value at that index (as supplies[i])

and range(len(supplies)) will iterate through all the indexes of supplies, no matter how many items

it contains.

The in and not in Operators

 We can determine whether a value is or isn’t in a list with the in and not in operators.

 in and not in are used in expressions and connect two values: a value to look for in a list and the list

where it may be found and these expressions will evaluate to a Boolean value.

 The following program lets the user type in a pet name and then checks to see whether the name is

in a list of pets.

Program

Output

The Multiple Assignment Trick

 The multiple assignment trick is a shortcut that lets you assign multiple variables with the values in

a list in one line of code.

 Instead of left-side program we could type the right-side program to assignment multiple variables

but the number of variables and the length of the list must be exactly equal, or Python will give you

a ValueError:

Augmented Assignment Operators

 When assigning a value to a variable, we will frequently use the variable itself.

 Instead of left-side program we could use right-side program i.e., with the augmented assignment

operator += to do the same thing as a shortcut.

 The Augmented Assignment Operators are listed in the below table:

 The += operator can also do string and list concatenation, and the *= operator can do string and list

replication.

Methods

 A method is same as a function, except it is “called on” a value.

 The method part comes after the value, separated by a period.

 Each data type has its own set of methods.

 The list data type has several useful methods for finding, adding, removing, and manipulating values

in a list.

Finding a Value in a List with the index() Method

 List values have an index() method that can be passed a value, and if that value exists in the list, the

index of the value is returned. If the value isn’t in the list, then Python produces a ValueError error.

 When there are duplicates of the value in the list, the index of its first appearance is returned.

Adding Values to Lists with the append() and insert() Methods

 To add new values to a list, use the append() and insert() methods.

 The append() method call adds the argument to the end of the list.

 The insert() method can insert a value at any index in the list. The first argument to insert() is the

index for the new value, and the second argument is the new value to be inserted.

 Methods belong to a single data type.

 The append() and insert() methods are list methods and can be called only on list values, not on

other values such as strings or integers.

Removing Values from Lists with remove()

 The remove() method is passed the value to be removed from the list it is called on.

 Attempting to delete a value that does not exist in the list will result in a ValueError error.

 If the value appears multiple times in the list, only the first instance of the value will be removed.

 The del statement is good to use when you know the index of the value you want to remove from

the list. The remove() method is good when you know the value you want to remove from the list.

Sorting the Values in a List with the sort() Method

 Lists of number values or lists of strings can be sorted with the sort() method.

 You can also pass True for the reverse keyword argument to have sort() sort the values in reverse

order.

 There are three things you should note about the sort() method.

o First, the sort() method sorts the list in place; don’t try to return value by writing code like

spam = spam.sort().

o Second, we cannot sort lists that have both number values and string values in them.

o Third, sort() uses “ASCIIbetical order(upper case)” rather than actual alphabetical

order(lower case) for sorting strings.

 If we need to sort the values in regular alphabetical order, pass str.lower for the key keyword

argument in the sort() method call.

 Example Program: Magic 8 Ball with a List

 We can write a much more elegant version of the Magic 8 Ball program. Instead of several lines of

nearly identical elif statements, we can create a single list.

 The expression you use as the index into messages: random .randint(0, len(messages) - 1). This

produces a random number to use for the index, regardless of the size of messages. That is, you’ll

get a random number between 0 and the value of len(messages) - 1.

Exceptions to Indentation Rules in Python

 The amount of indentation for a line of code tells Python what block it is in.

 lists can actually span several lines in the source code file. The indentation of these lines do not

matter; Python knows that until it sees the ending square bracket, the list is not finished.

 We can also split up a single instruction across multiple lines using the \ line continuation character

at the end.

 List-like Types: Strings and Tuples

 Lists aren’t the only data types that represent ordered sequences of values.

 Ex, we can also do these with strings: indexing; slicing; and using them with for loops, with len(),

and with the in and not in operators.

Mutable and Immutable Data Types

String

 However, a string is immutable: It cannot be changed. Trying to reassign a single character in a

string results in a TypeError error.

 The proper way to “mutate” a string is to use slicing and concatenation to build a new string by

copying from parts of the old string.

 We used [0:7] and [8:12] to refer to the characters that we don’t wish to replace. Notice that the

original 'Zophie a cat' string is not modified because strings are immutable.

List

 A list value is a mutable data type: It can have values added, removed, or changed.

 The list value in eggs isn’t being changed here; rather, an entirely new and different list value ([4, 5,

6]) is overwriting the old list value ([1, 2, 3]).

Figure: When eggs = [4, 5, 6] is executed, the contents of eggs are replaced with a new list value.

 If we want to modify the original list in eggs to contain [4, 5, 6], you would have to delete the items

in that and then add items to it.

Figure: The del statement and the append() method modify the same list value in place.

The Tuple Data Type

 The tuple data type is almost identical to the list data type, except in two ways.

 First, tuples are typed with parentheses, (and), instead of square brackets, [and].

 Second, benefit of using tuples instead of lists is that, because they are immutable and their contents

don’t change. Tuples cannot have their values modified, appended, or removed.

 If you have only one value in your tuple, you can indicate this by placing a trailing comma after the

value inside the parentheses.

Converting Types with the list() and tuple() Functions

 The functions list() and tuple() will return list and tuple versions of the values passed to them.

 Converting a tuple to a list is handy if you need a mutable version of a tuple value.

 References

 As we’ve seen, variables store strings and integer values.

 We assign 42 to the spam variable, and then we copy the value in spam and assign it to the variable

cheese. When we later change the value in spam to 100, this doesn’t affect the value in cheese. This

is because spam and cheese are different variables that store different values.

 But lists works differently. When we assign a list to a variable, we are actually assigning a list

reference to the variable. A reference is a value that points to some bit of data, and a list reference is

a value that points to a list.

 When we create the list ❶, we assign a reference to it in the spam variable. But the next line copies

only the list reference in spam to cheese, not the list value itself. This means the values stored in

spam and cheese now both refer to the same list.

 There is only one underlying list because the list itself was never actually copied. So when we

modify the first element of cheese, we are modifying the same list that spam refers to.

 List variables don’t actually contain lists—they contain references to lists.

Figure: spam = [0, 1, 2, 3, 4, 5] stores a reference to a list, not the actual list.

 The reference in spam is copied to cheese. Only a new reference was created and stored in cheese,

not a new list.

Figure: spam = cheese copies the reference, not the list

 When we alter the list that cheese refers to, the list that spam refers to is also changed, because both

cheese and spam refer to the same list.

Figure: cheese[1] = 'Hello!' modifies the list that both variables refer to

 Variables will contain references to list values rather than list values themselves.

 But for strings and integer values, variables will contain the string or integer value.

 Python uses references whenever variables must store values of mutable data types, such as lists or

dictionaries. For values of immutable data types such as strings, integers, or tuples, Python variables

will store the value itself.

Passing References

 References are particularly important for understanding how arguments get passed to functions.

 When a function is called, the values of the arguments are copied to the parameter variables.

Program Output

 when eggs() is called, a return value is not used to assign a new value to spam.

 Even though spam and someParameter contain separate references, they both refer to the same list.

This is why the append('Hello') method call inside the function affects the list even after the

function call has returned.

The copy Module’s copy() and deepcopy() Functions

 If the function modifies the list or dictionary that is passed, we may not want these changes in the

original list or dictionary value.

 For this, Python provides a module named copy that provides both the copy() and deepcopy()

functions.

 copy(), can be used to make a duplicate copy of a mutable value like a list or dictionary, not just a

copy of a reference.

 Now the spam and cheese variables refer to separate lists, which is why only the list in cheese is

modified when you assign 42 at index 1.

 The reference ID numbers are no longer the same for both variables because the variables refer to

independent lists.

Figure: cheese = copy.copy(spam) creates a second list that can be modified independently of the first.

 If the list you need to copy contains lists, then use the copy. deepcopy() function instead of

copy.copy(). The deepcopy() function will copy these inner lists as well.

MODULE 2

CHAPTER2: DICTIONARIES AND STRUCTURING DATA

1. The Dictionary Data Type

2. Pretty Printing

3. Using Data Structures to Model Real-World Things.

The Dictionary Data Type

 A dictionary is a collection of many values. Indexes for dictionaries can use many different data

types, not just integers. Indexes for dictionaries are called keys, and a key with its associated value

is called a key-value pair.

 A dictionary is typed with braces, {}.

 This assigns a dictionary to the myCat variable. This dictionary’s keys are 'size', 'color', and

'disposition'. The values for these keys are 'fat', 'gray', and 'loud', respectively. You can access these

values through their keys:

 Dictionaries can still use integer values as keys, but they do not have to start at 0 and can be any

number.

Dictionaries vs. Lists

 Unlike lists, items in dictionaries are unordered.

 The first item in a list named spam would be spam[0]. But there is no “first” item in a dictionary.

While the order of items matters for determining whether two lists are the same, it does not matter

in what order the key-value pairs are typed in a dictionary.

 Trying to access a key that does not exist in a dictionary will result in a KeyError error message,

much like a list’s “out-of-range” IndexError error message.

 We can have arbitrary values for the keys that allows us to organize our data in powerful ways.

 Ex: we want to store data about our friends’ birthdays. We can use a dictionary with the names as

keys and the birthdays as values.

Program Output

 We create an initial dictionary and store it in birthdays 1.

 We can see if the entered name exists as a key in the dictionary with the in keyword 2.

 If the name is in the dictionary, we access the associated value using square brackets 3; if not, we

can add it using the same square bracket syntax combined with the assignment operator 4.

The keys(), values(), and items() Methods

 There are three dictionary methods that will return list-like values of the dictionary’s keys, values,

or both keys and values: keys(), values(), and items().

 Data types (dict_keys, dict_values, and dict_items, respectively) can be used in for loops.

 A for loop can iterate over the keys, values, or key-value pairs in a dictionary by using keys(),

values(), and items() methods.

 The values in the dict_items value returned by the items() method are tuples of the key and value.

 If we want a true list from one of these methods, pass its list-like return value to the list() function.

 The list(spam.keys()) line takes the dict_keys value returned from keys() and passes it to list(),

which then returns a list value of ['color', 'age'].

 We can also use the multiple assignment trick in a for loop to assign the key and value to separate

variables.

Checking Whether a Key or Value Exists in a Dictionary

 We can use the in and not in operators to see whether a certain key or value exists in a dictionary.

The get() Method

 Dictionaries have a get() method that takes two arguments:

o The key of the value to retrieve and

o A fallback value to return if that key does not exist.

The setdefault() Method

 To set a value in a dictionary for a certain key only if that key does not already have a value.

 The setdefault() method offers a way to do this in one line of code.

 Setdeafault() takes 2 arguments:

o The first argument is the key to check for, and

o The second argument is the value to set at that key if the key does not exist. If the key does exist,

the setdefault() method returns the key’s value.

 The first time setdefault() is called, the dictionary in spam changes to {'color': 'black', 'age': 5, 'name':

'Pooka'}. The method returns the value 'black' because this is now the value set for the key 'color'. When

spam.setdefault('color', 'white') is called next, the value for that key is not changed to 'white' because

spam already has a key named 'color'.

 Ex: program that counts the number of occurrences of each letter in a string.

 The program loops over each character in the message variable’s string, counting how often each

character appears.

 The setdefault() method call ensures that the key is in the count dictionary (with a default value of 0), so

the program doesn’t throw a KeyError error when count[character] = count[character] + 1 is executed.

Output:

 Pretty Printing

 Importing pprint module will provide access to the pprint() and pformat() functions that will “pretty

print” a dictionary’s values.

 This is helpful when we want a cleaner display of the items in a dictionary than what print() provides

and also it is helpful when the dictionary itself contains nested lists or dictionaries..

Program: counts the number of occurrences of each letter in a string.

Output:

 If we want to obtain the prettified text as a string value instead of displaying it on the screen, call

pprint.pformat().

 Using Data Structures to Model Real-World Things

A Tic-Tac-Toe Board

 A tic-tac-toe board looks like a large hash symbol (#) with nine slots that can each contain an X, an O,

or a blank. To represent the board with a dictionary, we can assign each slot a string-value key as shown

in below figure.

Figure: The slots of a tic-tactoe board with their corresponding keys

 We can use string values to represent what’s in each slot on the board: 'X', 'O', or ' ' (a space character).

 To store nine strings. We can use a dictionary of values for this.

o The string value with the key 'top-R' can represent the top-right corner,

o The string value with the key 'low-L' can represent the bottom-left corner,

o The string value with the key 'mid-M' can represent the middle, and so on.

 Store this board-as-a-dictionary in a variable named theBoard.

 The data structure stored in the theBoard variable represents the tic-tactoe board in the below Figure.

Figure: An empty tic-tac-toe board

 Since the value for every key in theBoard is a single-space string, this dictionary represents a

completely clear board. If player X went first and chose the middle space, you could represent that

board with this dictionary as shown below:

Figure: A first move

 A board where player O has won by placing Os across the top might look like this:

 The data structure in theBoard now represents the tic-tac-toe board in the below Figure.

Figure: Player O wins.

 The player sees only what is printed to the screen, not the contents of variables.

 The tic-tac-toe program is updated as below.

Output:

 The printBoard() function can handle any tic-tac-toe data structure you pass it.

Program

Output:

 Now we created a data structure to represent a tic-tac-toe board and wrote code in printBoard() to

interpret that data structure, we now have a program that “models” the tic-tac-toe board.

Program: allows the players to enter their moves.

Output:

 The new code prints out the board at the start of each new turn 1, gets the active player’s move 2,

updates the game board accordingly 3, and then swaps the active player 4 before moving on to the next

turn.

Nested Dictionaries and Lists

 We can have program that contains dictionaries and lists which in turn contain other dictionaries and

lists.

 Lists are useful to contain an ordered series of values, and dictionaries are useful for associating keys

with values.

Program: which contains nested dictionaries in order to see who is bringing what to a picnic.

 Inside the totalBrought() function, the for loop iterates over the keyvalue pairs in guests 1.

 Inside the loop, the string of the guest’s name is assigned to k, and the dictionary of picnic items they’re

bringing is assigned to v.

 If the item parameter exists as a key in this dictionary, it’s value (the quantity) is added to numBrought

2.

 If it does not exist as a key, the get() method returns 0 to be added to numBrought.

Output:

Module 3

CHAPTER-1: MANIPULATING STRINGS

1. Working with Strings

2. Useful String Methods

3. Project: Password Locker

4. Project: Adding Bullets to Wiki Markup

Working with strings

String Literals

 String values begin and end with a single quote.

 But we want to use either double or single quotes within a string then we have a multiple ways to do

it as shown below.

Double Quotes

 One benefit of using double quotes is that the string can have a single quote character in it.

 Since the string begins with a double quote, Python knows that the single quote is part of the

string and not marking the end of the string.

Escape Characters

 If you need to use both single quotes and double quotes in the string, you’ll need to use escape

characters.

 An escape character consists of a backslash (\) followed by the character you want to add to the

string.

 Python knows that the single quote in Bob\'s has a backslash, it is not a single quote meant to

end the string value. The escape characters \' and \" allows to put single quotes and double

quotes inside your strings, respectively.

 Ex:

 The different special escape characters can be used in a program as listed below in a table.

Raw Strings

 You can place an r before the beginning quotation mark of a string to make it a raw string. A

raw string completely ignores all escape characters and prints any backslash that appears in the

string

Multiline Strings with Triple Quotes

 A multiline string in Python begins and ends with either three single quotes or three double

quotes.

 Any quotes, tabs, or newlines in between the “triple quotes” are considered part of the string.

Program

Output

 The following print() call would print identical text but doesn’t use a multiline string.

Multiline Comments

 While the hash character (#) marks the beginning of a comment for the rest of the line.

 A multiline string is often used for comments that span multiple lines.

Indexing and Slicing Strings

 Strings use indexes and slices the same way lists do. We can think of the string 'Hello world!' as a

list and each character in the string as an item with a corresponding index.

 The space and exclamation point are included in the character count, so 'Hello world!' is 12

characters long.

 If we specify an index, you’ll get the character at that position in the string.

 If we specify a range from one index to another, the starting index is included and the ending index

is not.

 The substring we get from spam[0:5] will include everything from spam[0] to spam[4], leaving out

the space at index 5.

Note: slicing a string does not modify the original string.

The in and not in Operators with Strings

 The in and not in operators can be used with strings just like with list values.

 An expression with two strings joined using in or not in will evaluate to a Boolean True or False.

 These expressions test whether the first string (the exact string, case sensitive) can be found within

the second string.

 Useful String Methods

 Several string methods analyze strings or create transformed string values.

The upper(), lower(), isupper(), and islower() String Methods

 The upper() and lower() string methods return a new string where all the letters in the original

string have been converted to uppercase or lowercase, respectively.

 These methods do not change the string itself but return new string values.

 If we want to change the original string, we have to call upper() or lower() on the string and then

assign the new string to the variable where the original was stored.

 The upper() and lower() methods are helpful if we need to make a case-insensitive comparison.

 In the following small program, it does not matter whether the user types Great, GREAT, or

grEAT, because the string is first converted to lowercase.

Program Output

 The isupper() and islower() methods will return a Boolean True value if the string has at least one

letter and all the letters are uppercase or lowercase, respectively. Otherwise, the method returns

False.

 Since the upper() and lower() string methods themselves return strings, you can call string methods

on those returned string values as well. Expressions that do this will look like a chain of method

calls.

The isX String Methods

 There are several string methods that have names beginning with the word is. These methods return

a Boolean value that describes the nature of the string.

 Here are some common isX string methods:

o isalpha() returns True if the string consists only of letters and is not blank.

o isalnum() returns True if the string consists only of letters and numbers and is not blank.

o isdecimal() returns True if the string consists only of numeric characters and is not blank.

o isspace() returns True if the string consists only of spaces, tabs, and newlines and is not

blank.

o istitle() returns True if the string consists only of words that begin with an uppercase letter

followed by only lowercase letters.

 The isX string methods are helpful when you need to validate user input.

 For example, the following program repeatedly asks users for their age and a password until they

provide valid input.

Program output

The startswith() and endswith() String Methods

 The startswith() and endswith() methods return True if the string value they are called on begins or

ends (respectively) with the string passed to the method; otherwise, they return False.

 These methods are useful alternatives to the == equals operator if we need to check only whether

the first or last part of the string, rather than the whole thing, is equal to another string.

The join() and split() String Methods

Join()

 The join() method is useful when we have a list of strings that need to be joined together into a

single string value.

 The join() method is called on a string, gets passed a list of strings, and returns a string. The

returned string is the concatenation of each string in the passed-in list.

 string join() calls on is inserted between each string of the list argument.

o Ex: when join(['cats', 'rats', 'bats']) is called on the ', ' string, the returned string is 'cats, rats,

bats'.

o join() is called on a string value and is passed a list value.

Split()

 The split() method is called on a string value and returns a list of strings.

 We can pass a delimiter string to the split() method to specify a different string to split upon.

 A common use of split() is to split a multiline string along the newline characters.

 Passing split() the argument '\n' lets us split the multiline string stored in spam along the newlines

and return a list in which each item corresponds to one line of the string.

Justifying Text with rjust(), ljust(), and center()

 The rjust() and ljust() string methods return a padded version of the string they are called on, with

spaces inserted to justify the text.

 The first argument to both methods is an integer length for the justified string.

 'Hello'.rjust(10) says that we want to right-justify 'Hello' in a string of total length 10. 'Hello' is five

characters, so five spaces will be added to its left, giving us a string of 10 characters with 'Hello'

justified right.

 An optional second argument to rjust() and ljust() will specify a fill character other than a space

character.

 The center() string method works like ljust() and rjust() but centers the text rather than justifying it

to the left or right.

 These methods are especially useful when you need to print tabular data that has the correct

spacing.

 In the below program, we define a printPicnic() method that will take in a dictionary of information

and use center(), ljust(), and rjust() to display that information in a neatly aligned table-like format.

o The dictionary that we’ll pass to printPicnic() is picnicItems.

o In picnicItems, we have 4 sandwiches, 12 apples, 4 cups, and 8000 cookies. We want to

organize this information into two columns, with the name of the item on the left and the

quantity on the right.

Program output

Removing Whitespace with strip(), rstrip(), and lstrip()

 The strip() string method will return a new string without any whitespace characters at the

beginning or end.

 The lstrip() and rstrip() methods will remove whitespace characters from the left and right ends,

respectively.

 Optionally, a string argument will specify which characters on the ends should be stripped.

 Passing strip() the argument 'ampS' will tell it to strip occurences of a, m, p, and capital S from the

ends of the string stored in spam.

 The order of the characters in the string passed to strip() does not matter: strip('ampS') will do the

same thing as strip('mapS') or strip('Spam').

Copying and Pasting Strings with the pyperclip Module

 The pyperclip module has copy() and paste() functions that can send text to and receive text from

your computer’s clipboard.

 Of course, if something outside of your program changes the clipboard contents, the paste()

function will return it.

 Project: Password Locker

 We probably have accounts on many different websites.

 It’s a bad habit to use the same password for each of them because if any of those sites has a

security breach, the hackers will learn the password to all of your other accounts.

 It’s best to use password manager software on your computer that uses one master password to

unlock the password manager.

 Then you can copy any account password to the clipboard and paste it into the website’s Password

field

 The password manager program you’ll create in this example isn’t secure, but it offers a basic

demonstration of how such programs work.

Step 1: Program Design and Data Structures

 We have to run this program with a command line argument that is the account’s name--for

instance, email or blog. That account’s password will be copied to the clipboard so that the user can

paste it into a Password field. The user can have long, complicated passwords without having to

memorize them.

 We need to start the program with a #! (shebang) line and should also write a comment that briefly

describes the program. Since we want to associate each account’s name with its password, we can

store these as strings in a dictionary.

Step 2: Handle Command Line Arguments

 The command line arguments will be stored in the variable sys.argv.

 The first item in the sys.argv list should always be a string containing the program’s filename

('pw.py'), and the second item should be the first command line argument.

Step 3: Copy the Right Password

 The account name is stored as a string in the variable account, you need to see whether it exists in

the PASSWORDS dictionary as a key. If so, you want to copy the key’s value to the clipboard

using pyperclip.copy().

 This new code looks in the PASSWORDS dictionary for the account name. If the account name is a

key in the dictionary, we get the value corresponding to that key, copy it to the clipboard, and print

a message saying that we copied the value. Otherwise, we print a message saying there’s no

account with that name.

 On Windows, you can create a batch file to run this program with the win-R Run window. Type the

following into the file editor and save the file as pw.bat in the C:\Windows folder:

 With this batch file created, running the password-safe program on Windows is just a matter of

pressing win-R and typing pw <account name>.

 Project: Adding Bullets to Wiki Markup

 When editing a Wikipedia article, we can create a bulleted list by putting each list item on its own

line and placing a star in front.

 But say we have a really large list that we want to add bullet points to. We could just type those

stars at the beginning of each line, one by one. Or we could automate this task with a short Python

script.

 The bulletPointAdder.py script will get the text from the clipboard, add a star and space to the

beginning of each line, and then paste this new text to the clipboard.

 Ex:

Program output

Step 1: Copy and Paste from the Clipboard

 You want the bulletPointAdder.py program to do the following:

1. Paste text from the clipboard

2. Do something to it

3. Copy the new text to the clipboard

 Steps 1 and 3 are pretty straightforward and involve the pyperclip.copy() and pyperclip.paste()

functions. saving the following program as bulletPointAdder.py:

Step 2: Separate the Lines of Text and Add the Star

 The call to pyperclip.paste() returns all the text on the clipboard as one big string. If we used the

“List of Lists of Lists” example, the string stored in text.

 The \n newline characters in this string cause it to be displayed with multiple lines when it is

printed or pasted from the clipboard.

 We could write code that searches for each \n newline character in the string and then adds the star

just after that. But it would be easier to use the split() method to return a list of strings, one for each

line in the original string, and then add the star to the front of each string in the list.

 We split the text along its newlines to get a list in which each item is one line of the text. For each

line, we add a star and a space to the start of the line. Now each string in lines begins with a star.

Step 3: Join the Modified Lines

 The lines list now contains modified lines that start with stars.

 pyperclip.copy() is expecting a single string value, not a list of string values. To make this single

string value, pass lines into the join() method to get a single string joined from the list’s strings.

 When this program is run, it replaces the text on the clipboard with text that has stars at the start of

each line.

MODULE 3

CHAPTER 2-READING AND

WRITING FILES

NOTE

Since your system probably has different files and folders on it than mine, you

be able to follow every example in this chapter exactly. Still, try to follow along

using folders that exist on your computer.

FILES AND FILE PATHS

A file has two key properties: a filename (usually written as one word) and a path. The

path specifies the location of a file on the computer. For example, there is a file on my

Windows laptop with the filename project.docx in the path C:\Users\Al\Documents. The

part of the filename after the last period is called the extension and tells you a

type. The filename project.docx is a Word document, and Users, Al, and Documents all

refer to folders (also called directories). Folders can contain files and other folders. For

example, project.docx is in the Documents folder, which is inside the Al folder, which is

inside the Users folder. Figure 9-1 shows this folder organization.

Figure 9-1: A file in a hierarchy of folders

The C:\ part of the path is the root folder, which contains all other folders. On

Windows, the root folder is named C:\ and is also called the C: drive. On macOS and

Linux, the root folder is / -style root folder, C:\. If you

are entering the interactive shell examples on macOS or Linux, enter / instead.

Additional volumes, such as a DVD drive or USB flash drive, will appear differently

on different operating systems. On Windows, they appear as new, lettered root drives,

such as D:\ or E:\. On macOS, they appear as new folders under the /Volumes folder. On

Linux, they appear as new folders under the /mnt folder. Also note that while

folder names and filenames are not case-sensitive on Windows and macOS, they are case-

sensitive on Linux.

/

Backslash on Windows and Forward Slash on macOS and Linux

On Windows, paths are written using backslashes (\) as the separator between folder

names. The macOS and Linux operating systems, however, use the forward slash (/) as

their path separator. If you want your programs to work on all operating systems, you

will have to write your Python scripts to handle both cases.

Fortunately, this is simple to do with the Path() function in the pathlib module. If you

pass it the string values of individual file and folder names in your path, Path() will return

a string with a file path using the correct path separators. Enter the following into the

interactive shell:

>>> from pathlib import Path

>>> Path('spam', 'bacon', 'eggs')

WindowsPath('spam/bacon/eggs')

>>> str(Path('spam', 'bacon', 'eggs'))

'spam\\bacon\\eggs'

Note that the convention for importing pathlib is to run from pathlib import Path, since

pathlib.Path everywhere Path shows up in our code. Not only

is this extra typing redundant, but also redundant.

Path('spam',

'bacon', 'eggs') returned a WindowsPath object for the joined path, represented as

WindowsPath('spam/bacon/eggs'). Even though Windows uses backslashes, the WindowsPath

representation in the interactive shell displays them using forward slashes, since open

source software developers have historically favored the Linux operating system.

If you want to get a simple text string of this path, you can pass it to the str() function,

which in our example returns 'spam\\bacon\\eggs'. (Notice that the backslashes are doubled

because each backslash needs to be escaped by another backslash character.) If I had

called this function on, say, Linux, Path() would have returned a PosixPath object that,

when passed to str(), would have returned 'spam/bacon/eggs'. (POSIX is a set of standards

for Unix-like operating systems such as Linux.)

These Path objects (really, WindowsPath or PosixPath objects, depending on your

operating system) will be passed to several of the file-related functions introduced in this

chapter. For example, the following code joins names from a list of filenames to the end

name:

>>> from pathlib import Path

>>> myFiles = ['accounts.txt', 'details.csv', 'invite.docx']

>>> for filename in myFiles:

/

print(Path(r'C:\Users\Al', filename))

C:\Users\Al\accounts.txt

C:\Users\Al\details.csv

C:\Users\Al\invite.docx

However, you can use backslashes in filenames on macOS and Linux. So while

Path(r'spam\eggs') refers to two separate folders (or a file eggs in a folder spam) on

Windows, the same command would refer to a single folder (or file) named spam\eggs

on macOS and Linux. For this reason, usually a good idea to always use forward

pathlib

module will ensure that it always works on all operating systems.

Note that pathlib was introduced in Python 3.4 to replace older os.path functions. The

Python Standard Library modules support it as of Python 3.6, but if you are working

with legacy Python 2 versions, I recommend using pathlib2, which gives you pathlib

features on Python 2.7. Appendix A has instructions for installing pathlib2 using pip.

os.path function with pathlib You

can look up the older functions at https://docs.python.org/3/library/os.path.html.

Using the / Operator to Join Paths

We normally use the + operator to add two integer or floating-point numbers, such as in

the expression 2 + 2, which evaluates to the integer value 4. But we can also use the +

operator to concatenate two string values, like the expression 'Hello' + 'World', which

evaluates to the string value 'HelloWorld'. Similarly, the / operator that we normally use for

division can also combine Path objects and strings. This is helpful for modifying a Path

Path() function.

For example, enter the following into the interactive shell:

>>> from pathlib import Path

>>> Path('spam') / 'bacon' / 'eggs'

WindowsPath('spam/bacon/eggs')

>>> Path('spam') / Path('bacon/eggs')

WindowsPath('spam/bacon/eggs')

>>> Path('spam') / Path('bacon', 'eggs')

WindowsPath('spam/bacon/eggs')

Using the / operator with Path objects makes joining paths just as easy as string

concatenation. also safer than using string concatenation or the join() method, like we

do in this example:

/

>>> homeFolder = r'C:\Users\Al'

>>> subFolder = 'spam'

>>> homeFolder + '\\' + subFolder

'C:\\Users\\Al\\spam'

>>> '\\'.join([homeFolder, subFolder])

'C:\\Users\\Al\\spam'

Windows. You could add an if statement that checks sys.platform (which contains a string

ind of slash to use, but

-prone.

The pathlib module solves these problems by reusing the / math division operator to

join paths correctly, no matter what operating system your code is running on. The

following example uses this strategy to join the same paths as in the previous example:

>>> homeFolder = Path('C:/Users/Al')

>>> subFolder = Path('spam')

>>> homeFolder / subFolder

WindowsPath('C:/Users/Al/spam')

>>> str(homeFolder / subFolder)

'C:\\Users\\Al\\spam'

The only thing you need to keep in mind when using the / operator for joining paths is

that one of the first two values must be a Path object. Python will give you an error if you

try entering the following into the interactive shell:

>>> 'spam' / 'bacon' / 'eggs'

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: unsupported operand type(s) for /: 'str' and 'str'

Python evaluates the / operator from left to right and evaluates to a Path object, so

either the first or second leftmost value must be a Path object for the entire expression to

evaluate to a Path object. how the / operator and a Path object evaluate to the final

Path object.

/

NOTE

While folder is the more modern name for directory, note that current working

directory (or just working directory

If you see the TypeError: unsupported operand type(s) for /: 'str' and 'str' error message shown

previously, you need to put a Path object on the left side of the expression.

The / operator replaces the older os.path.join() function, which you can learn more

about from https://docs.python.org/3/library/os.path.html#os.path.join.

The Current Working Directory

Every program that runs on your computer has a current working directory, or cwd. Any

filenames or paths that do not begin with the root folder are assumed to be under the

current working directory.

You can get the current working directory as a string value with the Path.cwd() function

and change it using os.chdir(). Enter the following into the interactive shell:

>>> from pathlib import Path

>>> import os

>>> Path.cwd()

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')'

>>> os.chdir('C:\\Windows\\System32')

>>> Path.cwd()

WindowsPath('C:/Windows/System32')

Here, the current working directory is set to

C:\Users\Al\AppData\Local\Programs\Python\Python37, so the filename project.docx

refers to C:\Users\Al\AppData\Local\Programs\Python\Python37\project.docx. When we

change the current working directory to C:\Windows\System32, the filename project.docx

is interpreted as C:\Windows\System32\project.docx.

/

Python will display an error if you try to change to a directory that does not exist.

>>> os.chdir('C:/ThisFolderDoesNotExist')

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

FileNotFoundError: [WinError 2] The system cannot find the file specified:

'C:/ThisFolderDoesNotExist'

There is no pathlib function for changing the working directory, because changing the

current working directory while a program is running can often lead to subtle bugs.

The os.getcwd() function is the older way of getting the current working directory as a

string.

The Home Directory

All users have a folder for their own files on the computer called the home directory or

home folder. You can get a Path object of the home folder by calling Path.home():

>>> Path.home()

WindowsPath('C:/Users/Al')

The home directories are located in a set place depending on your operating system:

On Windows, home directories are under C:\Users.

On Mac, home directories are under /Users.

On Linux, home directories are often under /home.

Your scripts will almost certainly have permissions to read and write the files under

work with.

Absolute vs. Relative Paths

There are two ways to specify a file path:

An absolute path, which always begins with the root folder

A relative path directory

There are also the dot (.) and dot-dot (..) folders. These are not real folders but special

Two -

/

Figure 9-2 is an example of some folders and files. When the current working

directory is set to C:\bacon, the relative paths for the other folders and files are set as

they are in the figure.

Figure 9-2: The relative paths for folders and files in the working directory C:\bacon

The .\ at the start of a relative path is optional. For example, .\spam.txt and spam.txt

refer to the same file.

Creating New Folders Using the os.makedirs() Function

Your programs can create new folders (directories) with the os.makedirs() function. Enter

the following into the interactive shell:

>>> import os

>>> os.makedirs('C:\\delicious\\walnut\\waffles')

This will create not just the C:\delicious folder but also a walnut folder inside

C:\delicious and a waffles folder inside C:\delicious\walnut. That is, os.makedirs() will

create any necessary intermediate folders in order to ensure that the full path exists.

Figure 9-3 shows this hierarchy of folders.

/

Figure 9-3: The result of os.makedirs('C:\\delicious\\walnut\\waffles')

To make a directory from a Path object, call the mkdir() method. For example, this code

will create a spam folder under the home folder on my computer:

>>> from pathlib import Path

>>> Path(r'C:\Users\Al\spam').mkdir()

Note that mkdir()

subdirectories at once like os.makedirs().

Handling Absolute and Relative Paths

The pathlib module provides methods for checking whether a given path is an absolute

path and returning the absolute path of a relative path.

Calling the is_absolute() method on a Path object will return True if it represents an

absolute path or False if it represents a relative path. For example, enter the following into

the interactive shell, using your own files and folders instead of the exact ones listed

here:

>>> Path.cwd()

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')

>>> Path.cwd().is_absolute()

True

>>> Path('spam/bacon/eggs').is_absolute()

False

To get an absolute path from a relative path, you can put Path.cwd() / in front of the

relative Path path

that is relative to the current working directory. Enter the following into the interactive

shell:

>>> Path('my/relative/path')

WindowsPath('my/relative/path')

>>> Path.cwd() / Path('my/relative/path')

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37/my/relative/

path')

If your relative path is relative to another path besides the current working directory,

just replace Path.cwd() with that other path instead. The following example gets an

absolute path using the home directory instead of the current working directory:

/

>>> Path('my/relative/path')

WindowsPath('my/relative/path')

>>> Path.home() / Path('my/relative/path')

WindowsPath('C:/Users/Al/my/relative/path')

The os.path module also has some useful functions related to absolute and relative

paths:

Calling os.path.abspath(path) will return a string of the absolute path of the argument.

This is an easy way to convert a relative path into an absolute one.

Calling os.path.isabs(path) will return True if the argument is an absolute path and False

if it is a relative path.

Calling os.path.relpath(path, start) will return a string of a relative path from the start

path to path. If start is not provided, the current working directory is used as the start

path.

Try these functions in the interactive shell:

>>> os.path.abspath('.')

'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37'

>>> os.path.abspath('.\\Scripts')

'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37\\Scripts'

>>> os.path.isabs('.')

False

>>> os.path.isabs(os.path.abspath('.'))

True

Since C:\Users\Al\AppData\Local\Programs\Python\Python37 was the working

directory when os.path.abspath() -

path 'C:\\Users\\Al\\AppData\\Local\\Programs\\Python\\Python37'.

Enter the following calls to os.path.relpath() into the interactive shell:

>>> os.path.relpath('C:\\Windows', 'C:\\')

'Windows'

>>> os.path.relpath('C:\\Windows', 'C:\\spam\\eggs')

'..\\..\\Windows'

When the relative path is within the same parent folder as the path, but is within

subfolders of a different path, such as 'C:\\Windows' and 'C:\\spam\\eggs', you can use the

/

-

Getting the Parts of a File Path

Given a Path object, you can extract the file different parts as strings using several

Path object attributes. These can be useful for constructing new file paths based on

existing ones. The attributes are diagrammed in Figure 9-4.

Figure 9-4: The parts of a Windows (top) and macOS/Linux (bottom) file path

The parts of a file path include the following:

The anchor, which is the root folder of the filesystem

On Windows, the drive, which is the single letter that often denotes a physical hard

drive or other storage device

The parent, which is the folder that contains the file

The name of the file, made up of the stem (or base name) and the suffix (or

extension)

Note that Windows Path objects have a drive attribute, but macOS and Linux Path

drive

To extract each attribute from the file path, enter the following into the interactive

shell:

>>> p = Path('C:/Users/Al/spam.txt')

>>> p.anchor

'C:\\'

>>> p.parent # This is a Path object, not a string.

WindowsPath('C:/Users/Al')

>>> p.name

'spam.txt'

/

>>> p.stem

'spam'

>>> p.suffix

'.txt'

>>> p.drive

'C:'

These attributes evaluate to simple string values, except for parent, which evaluates to

another Path object.

The parents attribute (which is different from the parent attribute) evaluates to the

ancestor folders of a Path object with an integer index:

>>> Path.cwd()

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python/Python37')

>>> Path.cwd().parents[0]

WindowsPath('C:/Users/Al/AppData/Local/Programs/Python')

>>> Path.cwd().parents[1]

WindowsPath('C:/Users/Al/AppData/Local/Programs')

>>> Path.cwd().parents[2]

WindowsPath('C:/Users/Al/AppData/Local')

>>> Path.cwd().parents[3]

WindowsPath('C:/Users/Al/AppData')

>>> Path.cwd().parents[4]

WindowsPath('C:/Users/Al')

>>> Path.cwd().parents[5]

WindowsPath('C:/Users')

>>> Path.cwd().parents[6]

WindowsPath('C:/')

The older os.path module also has similar functions for getting the different parts of a

path written in a string value. Calling os.path.dirname(path) will return a string of

everything that comes before the last slash in the path argument. Calling

os.path.basename(path) will return a string of everything that comes after the last slash in the

path argument. The directory (or dir) name and base name of a path are outlined in Figure 9-

5.

/

Figure 9-5: The base name follows the last slash in a path and is the same as the filename. The dir name is

everything before the last slash.

For example, enter the following into the interactive shell:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.basename(calcFilePath)

'calc.exe'

>>> os.path.dirname(calcFilePath)

'C:\\Windows\\System32'

os.path.split() to

get a tuple value with these two strings, like so:

>>> calcFilePath = 'C:\\Windows\\System32\\calc.exe'

>>> os.path.split(calcFilePath)

('C:\\Windows\\System32', 'calc.exe')

Notice that you could create the same tuple by calling os.path.dirname() and

os.path.basename() and placing their return values in a tuple:

>>> (os.path.dirname(calcFilePath), os.path.basename(calcFilePath))

('C:\\Windows\\System32', 'calc.exe')

But os.path.split() is a nice shortcut if you need both values.

Also, note that os.path.split() does not take a file path and return a list of strings of each

folder. For that, use the split() string method and split on the string in os.sep. (Note that sep

is in os, not os.path.) The os.sep variable is set to the correct folder-separating slash for the

computer running the program, '\\' on Windows and '/' on macOS and Linux, and splitting

on it will return a list of the individual folders.

For example, enter the following into the interactive shell:

>>> calcFilePath.split(os.sep)

['C:', 'Windows', 'System32', 'calc.exe']

This returns all the parts of the path as strings.

On macOS and Linux systems, the returned list of folders will begin with a blank

string, like this:

>>> '/usr/bin'.split(os. sep)

['', 'usr', 'bin']

/

The split() string method will work to return a list of each part of the path.

Finding File Sizes and Folder Contents

Once you have ways of handling file paths, you can then start gathering information

about specific files and folders. The os.path module provides functions for finding the size

of a file in bytes and the files and folders inside a given folder.

Calling os.path.getsize(path) will return the size in bytes of the file in the path

argument.

Calling os.listdir(path) will return a list of filename strings for each file in the path

argument. (Note that this function is in the os module, not os.path.)

>>> os.path.getsize('C:\\Windows\\System32\\calc.exe')

27648

>>> os.listdir('C:\\Windows\\System32')

['0409', '12520437.cpx', '12520850.cpx', '5U877.ax', 'aaclient.dll',

--snip--

'xwtpdui.dll', 'xwtpw32.dll', 'zh-CN', 'zh-HK', 'zh-TW', 'zipfldr.dll']

As you can see, the calc.exe program on my computer is 27,648 bytes in size, and I

have a lot of files in C:\Windows\system32. If I want to find the total size of all the files

in this directory, I can use os.path.getsize() and os.listdir() together.

>>> totalSize = 0

>>> for filename in os.listdir('C:\\Windows\\System32'):

totalSize = totalSize + os.path.getsize(os.path.join('C:\\Windows\\System32', filename))

>>> print(totalSize)

2559970473

As I loop over each filename in the C:\Windows\System32 folder, the totalSize variable

is incremented by the size of each file. Notice how when I call os.path.getsize(), I use

os.path.join() to join the folder name with the current filename. The integer that

os.path.getsize() returns is added to the value of totalSize. After looping through all the files,

I print totalSize to see the total size of the C:\Windows\System32 folder.

Modifying a List of Files Using Glob Patterns

If you want to work on specific files, the glob() method is simpler to use than listdir(). Path

objects have a glob() method for listing the contents of a folder according to a glob

/

pattern. Glob patterns are like a simplified form of regular expressions often used in

command line commands. The glob() method returns a generator object (which are

list() to easily view in the

interactive shell:

>>> p = Path('C:/Users/Al/Desktop')

>>> p.glob('*')

<generator object Path.glob at 0x000002A6E389DED0>

>>> list(p.glob('*')) # Make a list from the generator.

[WindowsPath('C:/Users/Al/Desktop/1.png'), WindowsPath('C:/Users/Al/

Desktop/22-ap.pdf'), WindowsPath('C:/Users/Al/Desktop/cat.jpg'),

--snip--

WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The asterisk (* p.glob('*') returns a

generator of all files in the path stored in p.

Like with regexes, you can create complex expressions:

>>> list(p.glob('*.txt') # Lists all text files.

[WindowsPath('C:/Users/Al/Desktop/foo.txt'),

--snip--

WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The glob pattern '*.txt' will return files that start with any combination of characters as

long as it ends with the string '.txt', which is the text file extension.

In contrast with the asterisk, the question mark (?) stands for any single character:

>>> list(p.glob('project?.docx')

[WindowsPath('C:/Users/Al/Desktop/project1.docx'), WindowsPath('C:/Users/Al/

Desktop/project2.docx'),

--snip--

WindowsPath('C:/Users/Al/Desktop/project9.docx')]

The glob expression 'project?.docx' will return 'project1.docx' or 'project5.docx', but it will

not return 'project10.docx', because ? only matches to one character so it will not match to

the two-character string '10'.

Finally, you can also combine the asterisk and question mark to create even more

complex glob expressions, like this:

/

>>> list(p.glob('*.?x?')

[WindowsPath('C:/Users/Al/Desktop/calc.exe'), WindowsPath('C:/Users/Al/

Desktop/foo.txt'),

--snip--

WindowsPath('C:/Users/Al/Desktop/zzz.txt')]

The glob expression '*.?x?' will return files with any name and any three-character

extension where the middle character is an 'x'.

By picking out files with specific attributes, the glob() method lets you easily specify

the files in a directory you want to perform some operation on. You can use a for loop to

iterate over the generator that glob() returns:

>>> p = Path('C:/Users/Al/Desktop')

>>> for textFilePathObj in p.glob('*.txt'):

... print(textFilePathObj) # Prints the Path object as a string.

... # Do something with the text file.

...

C:\Users\Al\Desktop\foo.txt

C:\Users\Al\Desktop\spam.txt

C:\Users\Al\Desktop\zzz.txt

If you want to perform some operation on every file in a directory, you can use either

os.listdir(p) or p.glob('*').

Checking Path Validity

Many Python functions will crash with an error if you supply them with a path that does

not exist. Luckily, Path objects have methods to check whether a given path exists and

whether it is a file or folder. Assuming that a variable p holds a Path object, you could

expect the following:

Calling p.exists() returns True if the path exists or returns False

Calling p.is_file() returns True if the path exists and is a file, or returns False

otherwise.

Calling p.is_dir() returns True if the path exists and is a directory, or returns False

otherwise.

>>> winDir = Path('C:/Windows')

>>> notExistsDir = Path('C:/This/Folder/Does/Not/Exist')

/

>>> calcFile = Path('C:/Windows

/System32/calc.exe')

>>> winDir.exists()

True

>>> winDir.is_dir()

True

>>> notExistsDir.exists()

False

>>> calcFile.is_file()

True

>>> calcFile.is_dir()

False

You can determine whether there is a DVD or flash drive currently attached to the

computer by checking for it with the exists() method. For instance, if I wanted to check

for a flash drive with the volume named D:\ on my Windows computer, I could do that

with the following:

>>> dDrive = Path('D:/')

>>> dDrive.exists()

False

Oops! It looks like I forgot to plug in my flash drive.

The older os.path module can accomplish the same task with the os.path.exists(path),

os.path.isfile(path), and os.path.isdir(path) functions, which act just like their Path function

counterparts. As of Python 3.6, these functions can accept Path objects as well as strings

of the file paths.

THE FILE READING/WRITING PROCESS

specify the location of files to read and write. The functions covered in the next few

sections will apply to plaintext files. Plaintext files contain only basic text characters and

do not include font, size, or color information. Text files with the .txt extension or Python

script files with the .py extension are examples of plaintext files. These can be opened

with Notepad or application. Your programs can easily

read the contents of plaintext files and treat them as an ordinary string value.

Binary files are all other file types, such as word processing documents, PDFs,

images, spreadsheets, and executable programs. If you open a binary file in Notepad or

TextEdit, it will look like scrambled nonsense, like in Figure 9-6.

/

Figure 9-6: The Windows calc.exe program opened in Notepad

Since every different type of binary file must be handled in its own way, this book

will not go into reading and writing raw binary files directly. Fortunately, many modules

make working with binary files easier you will explore one of them, the shelve module,

later in this chapter. The pathlib read_text() method returns a string of the full

contents of a text file. Its write_text() method creates a new text file (or overwrites an

existing one) with the string passed to it. Enter the following into the interactive shell:

>>> from pathlib import Path

>>> p = Path('spam.txt')

>>> p.write_text('Hello, world!')

13

>>> p.read_text()

'Hello, world!'

These method calls create a spam.txt file with the content 'Hello, world!'. The 13 that

write_text() returns indicates that 13 characters were written to the file. (You can often

disregard this information.) The read_text() call reads and returns the contents of our new

file as a string: 'Hello, world!'.

Keep in mind that these Path object methods only provide basic interactions with files.

The more common way of writing to a file involves using the open() function and file

objects. There are three steps to reading or writing files in Python:

1. Call the open() function to return a File object.

2. Call the read() or write() method on the File object.

3. Close the file by calling the close() method on the File object.

/

Opening Files with the open() Function

To open a file with the open() function, you pass it a string path indicating the file you

want to open; it can be either an absolute or relative path. The open() function returns a

File object.

Try it by creating a text file named hello.txt using Notepad or TextEdit. Type Hello,

world! as the content of this text file and save it in your user home folder. Then enter the

following into the interactive shell:

>>> helloFile = open(Path.home() / 'hello.txt')

The open() the

following into the interactive shell:

>>> helloFile = open('C:\\Users\\your_home_folder\\hello.txt')

instead:

>>> helloFile = open('/Users/your_home_folder/hello.txt')

Make sure to replace your_home_folder with your computer username. For example, my

username is Al 'C:\\Users\\Al\\hello.txt' on Windows. Note that the open()

function only accepts Path objects as of Python 3.6. In previous versions, you always

need to pass a string to open().

read mode

for short. When a file is opened in read mode, Python lets you only read data from the

way. Read mode is the default mode for files you

specify the mode by passing the string value 'r' as a second argument to open(). So

open('/Users/Al/hello.txt', 'r') and open('/Users/Al/hello.txt') do the same thing.

The call to open() returns a File object. A File object represents a file on your computer;

it is simply another type of value in Python, much like the lists and dictionaries

already familiar with. In the previous example, you stored the File object in the variable

helloFile. Now, whenever you want to read from or write to the file, you can do so by

calling methods on the File object in helloFile.

Reading the Contents of Files

Now that you have a File object, you can start reading from it. If you want to read the

entire contents of a file as a string value, use the File read() method.

/

continue with the hello.txt File object you stored in helloFile. Enter the following into the

interactive shell:

>>> helloContent = helloFile.read()

>>> helloContent

'Hello, world!'

If you think of the contents of a file as a single large string value, the read() method

returns the string that is stored in the file.

Alternatively, you can use the readlines() method to get a list of string values from the

file, one string for each line of text. For example, create a file named sonnet29.txt in the

same directory as hello.txt and write the following text in it:

When, in disgrace with fortune and men's eyes,

I all alone beweep my outcast state,

And trouble deaf heaven with my bootless cries,

And look upon myself and curse my fate,

Make sure to separate the four lines with line breaks. Then enter the following into

the interactive shell:

>>> sonnetFile = open(Path.home() / 'sonnet29.txt')

>>> sonnetFile.readlines()

[When, in disgrace with fortune and men's eyes,\n', ' I all alone beweep my

outcast state,\n', And trouble deaf heaven with my bootless cries,\n', And

look upon myself and curse my fate,']

Note that, except for the last line of the file, each of the string values ends with a

newline character \n. A list of strings is often easier to work with than a single large

string value.

Writing to Files

Python allows you to write content to a file in a way similar to how the print() function

You

mode, or write mode and append mode for short.

Write mode will overwrite the existing file and start from scratch, just like when you

'w' as the second argument to open() to

open the file in write mode. Append mode, on the other hand, will append text to the end

of the existing file. You can think of this as appending to a list in a variable, rather than

/

overwriting the variable altogether. Pass 'a' as the second argument to open() to open the

file in append mode.

If the filename passed to open() does not exist, both write and append mode will create

a new, blank file. After reading or writing a file, call the close() method before opening

the file again.

put these concepts together. Enter the following into the interactive shell:

>>> baconFile = open('bacon.txt', 'w')

>>> baconFile.write('Hello, world!\n')

13

>>> baconFile.close()

>>> baconFile = open('bacon.txt', 'a')

>>> baconFile.write('Bacon is not a vegetable.')

25

>>> baconFile.close()

>>> baconFile = open('bacon.txt')

>>> content = baconFile.read()

>>> baconFile.close()

>>> print(content)

Hello, world!

Bacon is not a vegetable.

First, we open bacon.txt bacon.txt yet, Python

creates one. Calling write() on the opened file and passing write() the string argument

'Hello, world! /n' writes the string to the file and returns the number of characters written,

including the newline. Then we close the file.

To add text to the existing contents of the file instead of replacing the string we just

wrote, we open the file in append mode. We write 'Bacon is not a vegetable.' to the file and

close it. Finally, to print the file contents to the screen, we open the file in its default read

mode, call read(), store the resulting File object in content, close the file, and print content.

Note that the write() method does not automatically add a newline character to the end

of the string like the print() function does. You will have to add this character yourself.

As of Python 3.6, you can also pass a Path object to the open() function instead of a

string for the filename.

SAVING VARIABLES WITH THE SHELVE MODULE

You can save variables in your Python programs to binary shelf files using the shelve

module. This way, your program can restore data to variables from the hard drive. The

/

shelve module will let you add Save and Open features to your program. For example, if

you ran a program and entered some configuration settings, you could save those settings

to a shelf file and then have the program load them the next time it is run.

Enter the following into the interactive shell:

>>> import shelve

>>> shelfFile = shelve.open('mydata')

>>> cats = ['Zophie', 'Pooka', 'Simon']

>>> shelfFile['cats'] = cats

>>> shelfFile.close()

To read and write data using the shelve module, you first import shelve. Call

shelve.open() and pass it a filename, and then store the returned shelf value in a variable.

You

call close() on the shelf value. Here, our shelf value is stored in shelfFile. We create a list

cats and write shelfFile['cats'] = cats to store the list in shelfFile as a value associated with the

key 'cats' (like in a dictionary). Then we call close() on shelfFile. Note that as of Python 3.7,

you have to pass the open() shelf method filenames as strings. You Path

object.

After running the previous code on Windows, you will see three new files in the

current working directory: mydata.bak, mydata.dat, and mydata.dir. On macOS, only a

single mydata.db file will be created.

These binary files contain the data you stored in your shelf. The format of these

binary files is not important; you only need to know what the shelve module does, not

how it does it. The module frees you from worrying about how to store your

data to a file.

Your programs can use the shelve module to later reopen and retrieve the data from

ed in read or write mode they can

do both once opened. Enter the following into the interactive shell:

>>> shelfFile = shelve.open('mydata')

>>> type(shelfFile)

<class 'shelve.DbfilenameShelf'>

>>> shelfFile['cats']

['Zophie', 'Pooka', 'Simon']

>>> shelfFile.close()

Here, we open the shelf files to check that our data was stored correctly. Entering

shelfFile['cats'] returns the same list that we stored earlier, so we know that the list is

/

correctly stored, and we call close().

Just like dictionaries, shelf values have keys() and values() methods that will return list-

like values of the keys and values in the shelf. Since these methods return list-like values

instead of true lists, you should pass them to the list() function to get them in list form.

Enter the following into the interactive shell:

>>> shelfFile = shelve.open('mydata')

>>> list(shelfFile.keys())

['cats']

>>> list(shelfFile.values())

[['Zophie', 'Pooka', 'Simon']]

>>> shelfFile.close()

TextEdit, but if you want to save data from your Python programs, use the shelve module.

SAVING VARIABLES WITH THE PPRINT.PFORMAT() FUNCTION

118 that the pprint.pprint()

pprint.pformat() function

will return this same text as a string instead of printing it. Not only is this string

formatted to be easy to read, but it is also syntactically correct Python code. Say you

have a dictionary stored in a variable and you want to save this variable and its contents

for future use. Using pprint.pformat() will give you a string that you can write to a .py file.

This file will be your very own module that you can import whenever you want to use

the variable stored in it.

For example, enter the following into the interactive shell:

>>> import pprint

>>> cats = [{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> pprint.pformat(cats)

"[{'desc': 'chubby', 'name': 'Zophie'}, {'desc': 'fluffy', 'name': 'Pooka'}]"

>>> fileObj = open('myCats.py', 'w')

>>> fileObj.write('cats = ' + pprint.pformat(cats) + '\n')

83

>>> fileObj.close()

Here, we import pprint to let us use pprint.pformat(). We have a list of dictionaries, stored

in a variable cats. To keep the list in cats available even after we close the shell, we use

/

pprint.pformat() to return it as a string. Once we have the data in cats

myCats.py.

The modules that an import statement imports are themselves just Python scripts.

When the string from pprint.pformat() is saved to a .py file, the file is a module that can be

imported just like any other.

And since Python scripts are themselves just text files with the .py file extension,

your Python programs can even generate other Python programs. You can then import

these files into scripts.

>>> import myCats

>>> myCats.cats

[{'name': 'Zophie', 'desc': 'chubby'}, {'name': 'Pooka', 'desc': 'fluffy'}]

>>> myCats.cats[0]

{'name': 'Zophie', 'desc': 'chubby'}

>>> myCats.cats[0]['name']

'Zophie'

The benefit of creating a .py file (as opposed to saving variables with the shelve

module) is that because it is a text file, the contents of the file can be read and modified

by anyone with a simple text editor. For most applications, however, saving data using

the shelve module is the preferred way to save variables to a file. Only basic data types

such as integers, floats, strings, lists, and dictionaries can be written to a file as simple

text. File objects, for example, cannot be encoded as text.

PROJECT: GENERATING RANDOM QUIZ FILES

trust the students not to cheat. like to randomize the order of questions so that

each quiz is unique, making it impossible for anyone to crib answers from anyone else.

Of course, doing this by hand would be a lengthy and boring affair. Fortunately, you

know some Python.

Here is what the program does:

1. Creates 35 different quizzes

2. Creates 50 multiple-choice questions for each quiz, in random order

3. Provides the correct answer and three random wrong answers for each question, in

random order

4. Writes the quizzes to 35 text files

/

5. Writes the answer keys to 35 text files

This means the code will need to do the following:

1. Store the states and their capitals in a dictionary

2. Call open(), write(), and close() for the quiz and answer key text files

3. Use random.shuffle() to randomize the order of the questions and multiple-choice

options

Step 1: Store the Quiz Data in a Dictionary

The first step is to create a skeleton script and fill it with your quiz data. Create a file

named randomQuizGenerator.py, and make it look like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

import random

The quiz data. Keys are states and values are their capitals.

capitals = {'Alabama': 'Montgomery', 'Alaska': 'Juneau', 'Arizona': 'Phoenix',

'Arkansas': 'Little Rock', 'California': 'Sacramento', 'Colorado': 'Denver',

'Connecticut': 'Hartford', 'Delaware': 'Dover', 'Florida': 'Tallahassee',

'Georgia': 'Atlanta', 'Hawaii': 'Honolulu', 'Idaho': 'Boise', 'Illinois':

'Springfield', 'Indiana': 'Indianapolis', 'Iowa': 'Des Moines', 'Kansas':

'Topeka', 'Kentucky': 'Frankfort', 'Louisiana': 'Baton Rouge', 'Maine':

'Augusta', 'Maryland': 'Annapolis', 'Massachusetts': 'Boston', 'Michigan':

'Lansing', 'Minnesota': 'Saint Paul', 'Mississippi': 'Jackson', 'Missouri':

'Jefferson City', 'Montana': 'Helena', 'Nebraska': 'Lincoln', 'Nevada':

'Carson City', 'New Hampshire': 'Concord', 'New Jersey': 'Trenton', 'New

Mexico': 'Santa Fe', 'New York': 'Albany',

'North Carolina': 'Raleigh', 'North Dakota': 'Bismarck', 'Ohio': 'Columbus', 'Oklahoma': 'Oklahoma City',

'Oregon': 'Salem', 'Pennsylvania': 'Harrisburg', 'Rhode Island': 'Providence',

'South Carolina': 'Columbia', 'South Dakota': 'Pierre', 'Tennessee':

'Nashville', 'Texas': 'Austin', 'Utah': 'Salt Lake City', 'Vermont':

'Montpelier', 'Virginia': 'Richmond', 'Washington': 'Olympia', 'West

Virginia': 'Charleston', 'Wisconsin': 'Madison', 'Wyoming': 'Cheyenne'}

Generate 35 quiz files.

for quizNum in range(35):

TODO: Create the quiz and answer key files.

/

TODO: Write out the header for the quiz.

TODO: Shuffle the order of the states.

TODO: Loop through all 50 states, making a question for each.

to import the random module to make use of its functions. The capitals variable

contains a dictionary with US states as keys and their capitals as values. And since you

want to create 35 quizzes, the code that actually generates the quiz and answer key files

(marked with TODO comments for now) will go inside a for loop that loops 35 times .

(This number can be changed to generate any number of quiz files.)

Step 2: Create the Quiz File and Shuffle the Question Order

TODOs.

The code in the loop will be repeated 35 times once for each quiz so you have to

ctual quiz

file. It needs to have a unique filename and should also have some kind of standard

header in it, with places for the student to fill in a name, date, and class period. Then

used later to create

the questions and answers for the quiz.

Add the following lines of code to randomQuizGenerator.py:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Generate 35 quiz files.

for quizNum in range(35):

Create the quiz and answer key files.

quizFile = open(f'capitalsquiz{quizNum + 1}.txt', 'w')

answerKeyFile = open(f'capitalsquiz_answers{quizNum + 1}.txt', 'w')

Write out the header for the quiz.

quizFile.write('Name:\n\nDate:\n\nPeriod:\n\n')

quizFile.write((' ' * 20) + f'State Capitals Quiz (Form{quizNum + 1})')

quizFile.write('\n\n')

/

Shuffle the order of the states.

states = list(capitals.keys())

random.shuffle(states)

TODO: Loop through all 50 states, making a question for each.

The filenames for the quizzes will be capitalsquiz<N>.txt, where <N> is a unique

number for the quiz that comes from quizNum, the for counter. The answer key for

capitalsquiz<N>.txt will be stored in a text file named capitalsquiz_answers<N>.txt.

Each time through the loop, the {quizNum + 1} placeholder in f'capitalsquiz{quizNum + 1}.txt'

and f'capitalsquiz_answers{quizNum + 1}.txt' will be replaced by the unique number, so the

first quiz and answer key created will be capitalsquiz1.txt and capitalsquiz_answers1.txt.

These files will be created with calls to the open() function at and , with 'w' as the

second argument to open them in write mode.

The write() statements at create a quiz header for the student to fill out. Finally, a

randomized list of US states is created with the help of the random.shuffle() function ,

which randomly reorders the values in any list that is passed to it.

Step 3: Create the Answer Options

Now you need to generate the answer options for each question, which will be multiple

choice from A to D. need to create another for loop this one to generate the

content for each of the 50 questions on the quiz. Then there will be a third for loop nested

inside to generate the multiple-choice options for each question. Make your code look

like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Loop through all 50 states, making a question for each.

for questionNum in range(50):

Get right and wrong answers.

correctAnswer = capitals[states[questionNum]]

wrongAnswers = list(capitals.values())

del wrongAnswers[wrongAnswers.index(correctAnswer)]

wrongAnswers = random.sample(wrongAnswers, 3)

/

answerOptions = wrongAnswers + [correctAnswer]

random.shuffle(answerOptions)

TODO: Write the question and answer options to the quiz file.

TODO: Write the answer key to a file.

The correct answer is easy to get capitals dictionary .

This loop will loop through the states in the shuffled states list, from states[0] to states[49],

find each state in capitals, and store that corresponding capital in correctAnswer.

The list of possible wrong answers is trickier. You can get it by duplicating all the

values in the capitals dictionary , deleting the correct answer , and selecting three

random values from this list . The random.sample() function makes it easy to do this

selection. Its first argument is the list you want to select from; the second argument is the

number of values you want to select. The full list of answer options is the combination of

these three wrong answers with the correct answers . Finally, the answers need to be

randomized

Step 4: Write Content to the Quiz and Answer Key Files

All that is left is to write the question to the quiz file and the answer to the answer key

file. Make your code look like the following:

#! python3

randomQuizGenerator.py - Creates quizzes with questions and answers in

random order, along with the answer key.

--snip--

Loop through all 50 states, making a question for each.

for questionNum in range(50):

--snip--

Write the question and the answer options to the quiz file.

quizFile.write(f'{questionNum + 1}. What is the capital of

{states[questionNum]}?\n')

for i in range(4):

quizFile.write(f" {'ABCD'[i]}. { answerOptions[i]}\n")

quizFile.write('\n')

/

Write the answer key to a file.

answerKeyFile.write(f"{questionNum + 1}.

{'ABCD'[answerOptions.index(correctAnswer)]}")

quizFile.close()

answerKeyFile.close()

A for loop that goes through integers 0 to 3 will write the answer options in the

answerOptions list . The expression 'ABCD'[i] at treats the string 'ABCD' as an array and

will evaluate to 'A','B', 'C', and then 'D' on each respective iteration through the loop.

In the final line , the expression answerOptions.index(correctAnswer) will find the integer

index of the correct answer in the randomly ordered answer options, and

'ABCD'[answerOptions.index(correctAnswer)] will evaluate t

written to the answer key file.

After you run the program, this is how your capitalsquiz1.txt file will look, though of

course your questions and answer options may be different from those shown here,

depending on the outcome of your random.shuffle() calls:

Name:

Date:

Period:

State Capitals Quiz (Form 1)

1. What is the capital of West Virginia?

A. Hartford

B. Santa Fe

C. Harrisburg

D. Charleston

2. What is the capital of Colorado?

A. Raleigh

B. Harrisburg

C. Denver

D. Lincoln

--snip--

The corresponding capitalsquiz_answers1.txt text file will look like this:

/

1. D

2. C

3. A

4. C

--snip--

PROJECT: UPDATABLE MULTI-CLIPBOARD

- shelve

module. The user will now be able to save new strings to load to the clipboard without

having to modify the source code. name this new program mcb.pyw

- .pyw

show a Terminal window when it runs this program. (See Appendix B for more details.)

The program will save each piece of clipboard text under a keyword. For example,

when you run py mcb.pyw save spam, the current contents of the clipboard will be saved

with the keyword spam. This text can later be loaded to the clipboard again by running

py mcb.pyw spam. And if the user forgets what keywords they have, they can run py

mcb.pyw list to copy a list of all keywords to the clipboard.

1. The command line argument for the keyword is checked.

2. If the argument is save, then the clipboard contents are saved to the keyword.

3. If the argument is list, then all the keywords are copied to the clipboard.

4. Otherwise, the text for the keyword is copied to the clipboard.

This means the code will need to do the following:

1. Read the command line arguments from sys.argv.

2. Read and write to the clipboard.

3. Save and load to a shelf file.

If you use Windows, you can easily run this script from the Run... window by

creating a batch file named mcb.bat with the following content:

@pyw.exe C:\Python34\mcb.pyw %*

Step 1: Comments and Shelf Setup

code look like the following:

/

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

Usage: py.exe mcb.pyw save <keyword> - Saves clipboard to keyword.

py.exe mcb.pyw <keyword> - Loads keyword to clipboard.

py.exe mcb.pyw list - Loads all keywords to clipboard.

import shelve, pyperclip, sys

mcbShelf = shelve.open('mcb')

TODO: Save clipboard content.

TODO: List keywords and load content.

mcbShelf.close()

common practice to put general usage information in comments at the top of the

file . If you ever forget how to run your script, you can always look at these comments

for a reminder. Then you import your modules . Copying and pasting will require the

pyperclip module, and reading the command line arguments will require the sys module.

The shelve module will also come in handy: Whenever the user wants to save a new piece

ur program. The

shelf file will be named with the prefix mcb .

Step 2: Save Clipboard Content with a Keyword

The program does different things depending on whether the user wants to save text to a

keyword, load text into the clipboard, or list all the existing keywords. deal with

that first case. Make your code look like the following:

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip--

Save clipboard content.

if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

TODO: List keywords and load content.

/

mcbShelf.close()

If the first command line argument (which will always be at index 1 of the sys.argv list)

is 'save' , the second command line argument is the keyword for the current content of

the clipboard. The keyword will be used as the key for mcbShelf, and the value will be the

text currently on the clipboard .

If there is only one command line argument, you will assume it is either 'list' or a

keyword to load content onto the clipboard. You will implement that code later. For now,

just put a TODO comment there .

Finally, implement the two remaining cases: the user wants to load clipboard text in

from a keyword, or they want a list of all available keywords. Make your code look like

the following:

#! python3

mcb.pyw - Saves and loads pieces of text to the clipboard.

--snip--

Save clipboard content.

if len(sys.argv) == 3 and sys.argv[1].lower() == 'save':

mcbShelf[sys.argv[2]] = pyperclip.paste()

elif len(sys.argv) == 2:

List keywords and load content.

if sys.argv[1].lower() == 'list':

pyperclip.copy(str(list(mcbShelf.keys())))

elif sys.argv[1] in mcbShelf:

pyperclip.copy(mcbShelf[sys.argv[1]])

mcbShelf.close()

If there is only one command line argument, first check whether 'list' . If so,

a string representation of the list of shelf keys will be copied to the clipboard . The user

can paste this list into an open text editor to read it.

Otherwise, you can assume the command line argument is a keyword. If this keyword

exists in the mcbShelf shelf as a key, you can load the value onto the clipboard .

And it! Launching this program has different steps depending on what

operating system your computer uses. See Appendix B for details.

/

Recall the password locker program you created in Chapter 6 that stored the

passwords in a dictionary. Updating the passwords required changing the source code of

source code to update their software. Also, every time you modify the source code to a

program, you run the risk of accidentally introducing new bugs. By storing the data for a

program in a different place than the code, you can make your programs easier for others

to use and more resistant to bugs.

SUMMARY

Files are organized into folders (also called directories), and a path describes the location

of a file. Every program running on your computer has a current working directory,

which allows you to specify file paths relative to the current location instead of always

typing the full (or absolute) path. The pathlib and os.path modules have many functions for

manipulating file paths.

Your programs can also directly interact with the contents of text files. The open()

function can open these files to read in their contents as one large string (with the read()

method) or as a list of strings (with the readlines() method). The open() function can open

files in write or append mode to create new text files or add to existing text files,

respectively.

In previous chapters, you used the clipboard as a way of getting large amounts of text

into a program, rather than typing it all in. Now you can have your programs read files

directly from the hard drive, which is a big improvement, since files are much less

volatile than the clipboard.

In the next chapter, you will learn how to handle the files themselves, by copying

them, deleting them, renaming them, moving them, and more.

PRACTICE QUESTIONS

1. What is a relative path relative to?

2. What does an absolute path start with?

3. What does Path('C:/Users') / 'Al' evaluate to on Windows?

4. What does 'C:/Users' / 'Al' evaluate to on Windows?

5. What do the os.getcwd() and os.chdir() functions do?

6. What are the . and .. folders?

7. In C:\bacon\eggs\spam.txt, which part is the dir name, and which part is the base

name?

8. open() function?

9. What happens if an existing file is opened in write mode?

10. What is the difference between the read() and readlines() methods?

11. What data structure does a shelf value resemble?

PRACTICE PROJECTS

For practice, design and write the following programs.

Extending the Multi-Clipboard

Extend the multi-clipboard program in this chapter so that it has a delete <keyword>

command line argument that will delete a keyword from the shelf. Then add a delete

command line argument that will delete all keywords.

Mad Libs

Create a Mad Libs program that reads in text files and lets the user add their own text

anywhere the word ADJECTIVE, NOUN, ADVERB, or VERB appears in the text file. For

example, a text file may look like this:

The ADJECTIVE panda walked to the NOUN and then VERB. A nearby NOUN was

unaffected by these events.

The program would find these occurrences and prompt the user to replace them.

Enter an adjective:

silly

Enter a noun:

chandelier

Enter a verb:

screamed

Enter a noun:

pickup truck

The following text file would then be created:

The silly panda walked to the chandelier and then screamed. A nearby pickup

truck was unaffected by these events.

/

MODULE 4

CHAPTER 1- ORGANIZING FILES

Making copies of all PDF files (and only the PDF files) in every subfolder of a

folder

Removing the leading zeros in the filenames for every file in a folder of hundreds

of files named spam001.txt, spam002.txt, spam003.txt, and so on

Compressing the contents of several folders into one ZIP file (which could be a

simple backup system)

All this boring stuff is just begging to be automated in Python. By programming your

computer to do these tasks, you can transform it into a quick-working file clerk who

never makes mistakes.

As you begin working with files, you may find it helpful to be able to quickly see

what the extension (.txt, .pdf, .jpg, and so on) of a file is. With macOS and Linux, your

file browser most likely shows extensions automatically. With Windows, file extensions

may be hidden by default. To show extensions, go to Start Control Panel

Appearance and Personalization Folder Options. On the View tab, under Advanced

Settings, uncheck the Hide extensions for known file types checkbox.

THE SHUTIL MODULE

The shutil (or shell utilities) module has functions to let you copy, move, rename, and

delete files in your Python programs. To use the shutil functions, you will first need to use

import shutil.

Copying Files and Folders

The shutil module provides functions for copying files, as well as entire folders.

Calling shutil.copy(source, destination) will copy the file at the path source to the folder at

the path destination. (Both source and destination can be strings or Path objects.) If destination

is a filename, it will be used as the new name of the copied file. This function returns a

string or Path object of the copied file.

Enter the following into the interactive shell to see how shutil.copy() works:

>>> import shutil, os

>>> from pathlib import Path

>>> p = Path.home()

>>> shutil.copy(p / 'spam.txt', p / 'some_folder')

'C:\\Users\\Al\\some_folder\\spam.txt'

/

/

>>> shutil.copy(p / 'eggs.txt', p / 'some_folder/eggs2.txt')

WindowsPath('C:/Users/Al/some_folder/eggs2.txt')

The first shutil.copy() call copies the file at C:\Users\Al\spam.txt to the folder

C:\Users\Al\some_folder. The return value is the path of the newly copied file. Note that

since a folder was specified as the destination , the original spam.txt filename is used

for the new, copied filename. The second shutil.copy() call also copies the file at

C:\Users\Al\eggs.txt to the folder C:\Users\Al\some_folder but gives the copied file the

name eggs2.txt.

While shutil.copy() will copy a single file, shutil.copytree() will copy an entire folder and

every folder and file contained in it. Calling shutil.copytree(source, destination) will copy the

folder at the path source, along with all of its files and subfolders, to the folder at the path

destination. The source and destination parameters are both strings. The function returns a

string of the path of the copied folder.

Enter the following into the interactive shell:

>>> import shutil, os

>>> from pathlib import Path

>>> p = Path.home()

>>> shutil.copytree(p / 'spam', p / 'spam_backup')

WindowsPath('C:/Users/Al/spam_backup')

The shutil.copytree() call creates a new folder named spam_backup with the same

content as the original spam folder. You have now safely backed up your precious,

precious spam.

Moving and Renaming Files and Folders

Calling shutil.move(source, destination) will move the file or folder at the path source to the

path destination and will return a string of the absolute path of the new location.

If destination points to a folder, the source file gets moved into destination and keeps its

current filename. For example, enter the following into the interactive shell:

>>> import shutil

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs\\bacon.txt'

Assuming a folder named eggs already exists in the C:\ directory, this shutil.move() call

C:\bacon.txt into the folder C:\eggs

/

If there had been a bacon.txt file already in C:\eggs, it would have been overwritten.

Since easy to accidentally overwrite files in this way, you should take some care

when using move().

The destination path can also specify a filename. In the following example, the source

file is moved and renamed.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs\\new_bacon.txt')

'C:\\eggs\\new_bacon.txt'

C:\bacon.txt into the folder C:\eggs

rename that bacon.txt file to new_bacon.txt

Both of the previous examples worked under the assumption that there was a folder

eggs in the C:\ directory. But if there is no eggs folder, then move() will rename bacon.txt

to a file named eggs.

>>> shutil.move('C:\\bacon.txt', 'C:\\eggs')

'C:\\eggs'

Here, move() eggs in the C:\ directory and so assumes that

destination must be specifying a filename, not a folder. So the bacon.txt text file is

renamed to eggs (a text file without the .txt file extension) probably not what you

wanted! This can be a tough-to-spot bug in your programs since the move() call can

happily do something that might be quite different from what you were expecting. This

is yet another reason to be careful when using move().

Finally, the folders that make up the destination must already exist, or else Python

will throw an exception. Enter the following into the interactive shell:

>>> shutil.move('spam.txt', 'c:\\does_not_exist\\eggs\\ham')

Traceback (most recent call last):

--snip--

FileNotFoundError: [Errno 2] No such file or directory: 'c:\\does_not_exist\\

eggs\\ham'

Python looks for eggs and ham inside the directory does_not_exist

spam.txt to the path you specified.

Permanently Deleting Files and Folders

You can delete a single file or a single empty folder with functions in the os module,

whereas to delete a folder and all of its contents, you use the shutil module.

/

Calling os.unlink(path) will delete the file at path.

Calling os.rmdir(path) will delete the folder at path. This folder must be empty of any

files or folders.

Calling shutil.rmtree(path) will remove the folder at path, and all files and folders it

contains will also be deleted.

Be careful when using these functions in your programs! often a good idea to first

run your program with these calls commented out and with print() calls added to show the

files that would be deleted. Here is a Python program that was intended to delete files

that have the .txt file extension but has a typo (highlighted in bold) that causes it to delete

.rxt files instead:

import os

from pathlib import Path

for filename in Path.home().glob('*.rxt'):

os.unlink(filename)

If you had any important files ending with .rxt, they would have been accidentally,

permanently deleted. Instead, you should have first run the program like this:

import os

from pathlib import Path

for filename in Path.home().glob('*.rxt'):

#os.unlink(filename)

print(filename)

Now the os.unlink() call is commented, so Python ignores it. Instead, you will print the

filename of the file that would have been deleted. Running this version of the program

first will show you that accidentally told the program to delete .rxt files instead of

.txt files.

Once you are certain the program works as intended, delete the print(filename) line and

uncomment the os.unlink(filename) line. Then run the program again to actually delete the

files.

Safe Deletes with the send2trash Module

-in shutil.rmtree() function irreversibly deletes files and folders, it can

be dangerous to use. A much better way to delete files and folders is with the third-party

send2trash module. You can install this module by running pip install --user send2trash from a

Terminal window. (See Appendix A for a more in-depth explanation of how to install third-

party modules.)

/

Using send2trash will

send folders and files to your compute

deleting them. If a bug in your program deletes something with send2trash

intend to delete, you can later restore it from the recycle bin.

After you have installed send2trash, enter the following into the interactive shell:

>>> import send2trash

>>> baconFile = open('bacon.txt', 'a') # creates the file

>>> baconFile.write('Bacon is not a vegetable.')

25

>>> baconFile.close()

>>> send2trash.send2trash('bacon.txt')

In general, you should always use the send2trash.send2trash() function to delete files and

folders. But while sending files to the recycle bin lets you recover them later, it will not

free up disk space like permanently deleting them does. If you want your program to free

up disk space, use the os and shutil functions for deleting files and folders. Note that the

send2trash() function can only send files to the recycle bin; it cannot pull files out of it.

WALKING A DIRECTORY TREE

Say you want to rename every file in some folder and also every file in every subfolder

of that folder. That is, you want to walk through the directory tree, touching each file as

you go. Writing a program to do this could get tricky; fortunately, Python provides a

function to handle this process for you.

look at the C:\delicious folder with its contents, shown in Figure 10-1.

/

Figure 10-1: An example folder that contains three folders and four files

Here is an example program that uses the os.walk() function on the directory tree from

Figure 10-1:

import os

for folderName, subfolders, filenames in os.walk('C:\\delicious'):

print('The current folder is ' + folderName)

for subfolder in subfolders:

print('SUBFOLDER OF ' + folderName + ': ' + subfolder)

for filename in filenames:

print('FILE INSIDE ' + folderName + ': '+ filename)

print('')

The os.walk() function is passed a single string value: the path of a folder. You can use

os.walk() in a for loop statement to walk a directory tree, much like how you can use the

range() function to walk over a range of numbers. Unlike range(), the os.walk() function will

return three values on each iteration through the loop:

A string of the current folder

A list of strings of the folders in the current folder

/

A list of strings of the files in the current folder

(By current folder, I mean the folder for the current iteration of the for loop. The

current working directory of the program is not changed by os.walk().)

Just like you can choose the variable name i in the code for i in range(10):, you can also

choose the variable names for the three values listed earlier. I usually use the names

foldername, subfolders, and filenames.

When you run this program, it will output the following:

The current folder is C:\delicious

SUBFOLDER OF C:\delicious: cats

SUBFOLDER OF C:\delicious: walnut

FILE INSIDE C:\delicious: spam.txt

The current folder is C:\delicious\cats

FILE INSIDE C:\delicious\cats: catnames.txt

FILE INSIDE C:\delicious\cats: zophie.jpg

The current folder is C:\delicious\walnut

SUBFOLDER OF C:\delicious\walnut: waffles

The current folder is C:\delicious\walnut\waffles

FILE INSIDE C:\delicious\walnut\waffles: butter.txt.

Since os.walk() returns lists of strings for the subfolder and filename variables, you can

use these lists in their own for loops. Replace the print() function calls with your own

for loops.)

COMPRESSING FILES WITH THE ZIPFILE MODULE

You may be familiar with ZIP files (with the .zip file extension), which can hold the

compressed contents of many other files. Compressing a file reduces its size, which is

useful when transferring it over the internet. And since a ZIP file can also contain

multiple files and subfolders, a handy way to package several files into one. This

single file, called an archive file, can then be, say, attached to an email.

Your Python programs can create and open (or extract) ZIP files using functions in

the zipfile module. Say you have a ZIP file named example.zip that has the contents

shown in Figure 10-2.

/

Figure 10-2: The contents of example.zip

You can download this ZIP file from https://nostarch.com/automatestuff2/ or just

follow along using a ZIP file already on your computer.

Reading ZIP Files

To read the contents of a ZIP file, first you must create a ZipFile object (note the capital

letters Z and F). ZipFile objects are conceptually similar to the File objects you saw

returned by the open() function in the previous chapter: they are values through which the

program interacts with the file. To create a ZipFile object, call the zipfile.ZipFile() function,

passing it a string of the .ZIP filename. Note that zipfile is the name of the Python

module, and ZipFile() is the name of the function.

For example, enter the following into the interactive shell:

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

>>> exampleZip.namelist()

['spam.txt', 'cats/', 'cats/catnames.txt', 'cats/zophie.jpg']

>>> spamInfo = exampleZip.getinfo('spam.txt')

>>> spamInfo.file_size

13908

>>> spamInfo.compress_size

3828

>>> f'Compressed file is {round(spamInfo.file_size / spamInfo

.compress_size, 2)}x smaller!'

)

'Compressed file is 3.63x smaller!'

>>> exampleZip.close()

/

A ZipFile object has a namelist() method that returns a list of strings for all the files and

folders contained in the ZIP file. These strings can be passed to the getinfo() ZipFile

method to return a ZipInfo object about that particular file. ZipInfo objects have their own

attributes, such as file_size and compress_size in bytes, which hold integers of the original

file size and compressed file size, respectively. While a ZipFile object represents an entire

archive file, a ZipInfo object holds useful information about a single file in the archive.

The command at calculates how efficiently example.zip is compressed by dividing

the original file size by the compressed file size and prints this information.

Extracting from ZIP Files

The extractall() method for ZipFile objects extracts all the files and folders from a ZIP file

into the current working directory.

>>> import zipfile, os

>>> from pathlib import Path

>>> p = Path.home()

>>> exampleZip = zipfile.ZipFile(p / 'example.zip')

>>> exampleZip.extractall()

>>> exampleZip.close()

After running this code, the contents of example.zip will be extracted to C:\.

Optionally, you can pass a folder name to extractall() to have it extract the files into a

folder other than the current working directory. If the folder passed to the extractall()

method does not exist, it will be created. For instance, if you replaced the call at with

exampleZip.extractall('C:\\delicious'), the code would extract the files from example.zip into a

newly created C:\delicious folder.

The extract() method for ZipFile objects will extract a single file from the ZIP file.

Continue the interactive shell example:

>>> exampleZip.extract('spam.txt')

'C:\\spam.txt'

>>> exampleZip.extract('spam.txt', 'C:\\some\\new\\folders')

'C:\\some\\new\\folders\\spam.txt'

>>> exampleZip.close()

The string you pass to extract() must match one of the strings in the list returned by

namelist(). Optionally, you can pass a second argument to extract() to extract the file into a

folder other than the current working directory. If this second argument is a folder that

/

folder. The value that extract() returns is the

absolute path to which the file was extracted.

Creating and Adding to ZIP Files

To create your own compressed ZIP files, you must open the ZipFile object in write mode

by passing 'w' as the second argument. (This is similar to opening a text file in write

mode by passing 'w' to the open() function.)

When you pass a path to the write() method of a ZipFile object, Python will compress

the file at that path and add it into the ZIP file. The write()

string of the filename to add. The second argument is the compression type parameter,

which tells the computer what algorithm it should use to compress the files; you can

always just set this value to zipfile.ZIP_DEFLATED. (This specifies the deflate compression

algorithm, which works well on all types of data.) Enter the following into the interactive

shell:

>>> import zipfile

>>> newZip = zipfile.ZipFile('new.zip', 'w')

>>> newZip.write('spam.txt', compress_type=zipfile.ZIP_DEFLATED)

>>> newZip.close()

This code will create a new ZIP file named new.zip that has the compressed contents

of spam.txt.

Keep in mind that, just as with writing to files, write mode will erase all existing

contents of a ZIP file. If you want to simply add files to an existing ZIP file, pass 'a' as

the second argument to zipfile.ZipFile() to open the ZIP file in append mode.

PROJECT: RENAMING FILES WITH AMERICAN-STYLE DATES TO

EUROPEAN-STYLE DATES

Say your boss emails you thousands of files with American-style dates (MM-DD-

YYYY) in their names and needs them renamed to European-style dates (DD-MM-

YYYY). This boring task could take all day to do by hand! write a program to do it

instead.

Her

1. It searches all the filenames in the current working directory for American-style

dates.

2. When one is found, it renames the file with the month and day swapped to make it

European-style.

/

This means the code will need to do the following:

1. Create a regex that can identify the text pattern of American-style dates.

2. Call os.listdir() to find all the files in the working directory.

3. Loop over each filename, using the regex to check whether it has a date.

4. If it has a date, rename the file with shutil.move().

For this project, open a new file editor window and save your code as

renameDates.py.

Step 1: Create a Regex for American-Style Dates

The first part of the program will need to import the necessary modules and create a

regex that can identify MM-DD-YYYY dates. The to-do comments will remind you

left to write in this program. Typing them as TODO makes them easy to find using

CTRL-F find feature. Make your code look like the following:

#! python3

renameDates.py - Renames filenames with American MM-DD-YYYY date format

to European DD-MM-YYYY.

import shutil, os, re

Create a regex that matches files with the American date format.

datePattern = re.compile(r"""^(.*?) # all text before the date

((0|1)?\d)- # one or two digits for the month

((0|1|2|3)?\d)- # one or two digits for the day

((19|20)\d\d) # four digits for the year

(.*?)$ # all text after the date

""", re.VERBOSE)

TODO: Loop over the files in the working directory.

TODO: Skip files without a date.

TODO: Get the different parts of the filename.

TODO: Form the European-style filename.

TODO: Get the full, absolute file paths.

/

TODO: Rename the files.

From this chapter, you know the shutil.move() function can be used to rename files: its

arguments are the name of the file to rename and the new filename. Because this

function exists in the shutil module, you must import that module .

But before renaming the files, you need to identify which files you want to rename.

Filenames with dates such as spam4-4-1984.txt and 01-03-2014eggs.zip should be

renamed, while filenames without dates such as littlebrother.epub can be ignored.

You can use a regular expression to identify this pattern. After importing the re

module at the top, call re.compile() to create a Regex object . Passing re.VERBOSE for the

second argument will allow whitespace and comments in the regex string to make it

more readable.

The regular expression string begins with ^(.*?) to match any text at the beginning of

the filename that might come before the date. The ((0|1)?\d) group matches the month.

The first digit can be either 0 or 1, so the regex matches 12 for December but also 02 for

February. This digit is also optional so that the month can be 04 or 4 for April. The group

for the day is ((0|1|2|3)?\d) and follows similar logic; 3, 03, and 31 are all valid numbers for

days. (Yes, this regex will accept some invalid dates such as 4-31-2014, 2-29-2013, and 0-15-

2014. Dates have a lot of thorny special cases that can be easy to miss. But for simplicity,

the regex in this program works well enough.)

While 1885 is a valid year, you can just look for years in the 20th or 21st century.

This will keep your program from accidentally matching nondate filenames with a date-

like format, such as 10-10-1000.txt.

The (.*?)$ part of the regex will match any text that comes after the date.

Step 2: Identify the Date Parts from the Filenames

Next, the program will have to loop over the list of filename strings returned from

os.listdir() and match them against the regex. Any files that do not have a date in them

should be skipped. For filenames that have a date, the matched text will be stored in

several variables. Fill in the first three TODOs in your program with the following code:

#! python3

renameDates.py - Renames filenames with American MM-DD-YYYY date format

to European DD-MM-YYYY.

--snip--

Loop over the files in the working directory.

/

for amerFilename in os.listdir('.'):

mo = datePattern.search(amerFilename)

Skip files without a date.

if mo == None:

continue

Get the different parts of the filename.

beforePart = mo.group(1)

monthPart = mo.group(2)

dayPart = mo.group(4)

yearPart = mo.group(6)

afterPart = mo.group(8)

--snip--

If the Match object returned from the search() method is None , then the filename in

amerFilename does not match the regular expression. The continue statement will skip the

rest of the loop and move on to the next filename.

Otherwise, the various strings matched in the regular expression groups are stored in

variables named beforePart, monthPart, dayPart, yearPart, and afterPart . The strings in these

variables will be used to form the European-style filename in the next step.

To keep the group numbers straight, try reading the regex from the beginning, and

count up each time you encounter an opening parenthesis. Without thinking about the

code, just write an outline of the regular expression. This can help you visualize the

groups. an example:

datePattern = re.compile(r"""^(1) # all text before the date

(2 (3))- # one or two digits for the month

(4 (5))- # one or two digits for the day

(6 (7)) # four digits for the year

(8)$ # all text after the date

""", re.VERBOSE)

Here, the numbers 1 through 8 represent the groups in the regular expression you

wrote. Making an outline of the regular expression, with just the parentheses and group

numbers, can give you a clearer understanding of your regex before you move on with

the rest of the program.

Step 3: Form the New Filename and Rename the Files

/

As the final step, concatenate the strings in the variables made in the previous step with

the European-style date: the date comes before the month. Fill in the three remaining

TODOs in your program with the following code:

#! python3

renameDates.py - Renames filenames with American MM-DD-YYYY date format # to European DD- MM-

YYYY.

--snip--

Form the European-style filename.

euroFilename = beforePart + dayPart + '-' + monthPart + '-' + yearPart +

afterPart

Get the full, absolute file paths.

absWorkingDir = os.path.abspath('.')

amerFilename = os.path.join(absWorkingDir, amerFilename)

euroFilename = os.path.join(absWorkingDir, euroFilename)

Rename the files.

print(f'Renaming "{amerFilename}" to "{euroFilename}"...')

#shutil.move(amerFilename, euroFilename) # uncomment after testing

Store the concatenated string in a variable named euroFilename . Then, pass the

original filename in amerFilename and the new euroFilename variable to the shutil.move()

function to rename the file .

This program has the shutil.move() call commented out and instead prints the filenames

that will be renamed . Running the program like this first can let you double-check that

the files are renamed correctly. Then you can uncomment the shutil.move() call and run the

program again to actually rename the files.

Ideas for Similar Programs

There are many other reasons you might want to rename a large number of files.

To add a prefix to the start of the filename, such as adding spam_ to rename eggs.txt

to spam_eggs.txt

To change filenames with European-style dates to American-style dates

To remove the zeros from files such as spam0042.txt

/

PROJECT: BACKING UP A FOLDER INTO A ZIP FILE

C:\AlsPythonBook.

folder. like to keep different versions, so you want

the ZIP filename to increment each time it is made; for example,

AlsPythonBook_1.zip, AlsPythonBook_2.zip, AlsPythonBook_3.zip, and so on. You could

do this by hand, but it is rather annoying, and you might accidentally misnumber the ZIP

would be much simpler to run a program that does this boring task for

you.

For this project, open a new file editor window and save it as backupToZip.py.

The code for this program will be placed into a function named backupToZip(). This will

make it easy to copy and paste the function into other Python programs that need this

functionality. At the end of the program, the function will be called to perform the

backup. Make your program look like this:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

import zipfile, os

def backupToZip(folder):

Back up the entire contents of "folder" into a ZIP file.

folder = os.path.abspath(folder) # make sure folder is absolute

Figure out the filename this code should use based on

what files already exist.

number = 1

while True:

zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'

if not os.path.exists(zipFilename):

break

number = number + 1

TODO: Create the ZIP file.

/

TODO: Walk the entire folder tree and compress the files in each folder.

print('Done.')

backupToZip('C:\\delicious')

Do the basics first: add the shebang (#!) line, describe what the program does, and

import the zipfile and os modules .

Define a backupToZip() function that takes just one parameter, folder. This parameter is

a string path to the folder whose contents should be backed up. The function will

determine what filename to use for the ZIP file it will create; then the function will create

the file, walk the folder folder, and add each of the subfolders and files to the ZIP file.

Write TODO comments for these steps in the source code to remind yourself to do them

later .

The first part, naming the ZIP file, uses the base name of the absolute path of folder. If

the folder being backed up is C:\delicious delicious_N.zip,

where N = 1 is the first time you run the program, N = 2 is the second time, and so on.

You can determine what N should be by checking whether delicious_1.zip already

exists, then checking whether delicious_2.zip already exists, and so on. Use a variable

named number for N , and keep incrementing it inside the loop that calls os.path.exists() to

check whether the file exists . The first nonexistent filename found will cause the loop

to break, since it will have found the filename of the new zip.

Step 2: Create the New ZIP File

Next create the ZIP file. Make your program look like the following:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

--snip--

while True:

zipFilename = os.path.basename(folder) + '_' + str(number) + '.zip'

if not os.path.exists(zipFilename):

break

number = number + 1

Create the ZIP file.

print(f'Creating {zipFilename}...')

backupZip = zipfile.ZipFile(zipFilename, 'w')

/

TODO: Walk the entire folder tree and compress the files in each folder.

print('Done.')

backupToZip('C:\\delicious')

Now that the new ZIP name is stored in the zipFilename variable, you can call

zipfile.ZipFile() to actually create the ZIP file . Be sure to pass 'w' as the second argument

so that the ZIP file is opened in write mode.

Step 3: Walk the Directory Tree and Add to the ZIP File

Now you need to use the os.walk() function to do the work of listing every file in the

folder and its subfolders. Make your program look like the following:

#! python3

backupToZip.py - Copies an entire folder and its contents into

a ZIP file whose filename increments.

--snip--

Walk the entire folder tree and compress the files in each folder.

for foldername, subfolders, filenames in os.walk(folder):

print(f'Adding files in {foldername}...')

Add the current folder to the ZIP file.

backupZip.write(foldername)

Add all the files in this folder to the ZIP file.

for filename in filenames:

newBase = os.path.basename(folder) + '_'

if filename.startswith(newBase) and filename.endswith('.zip'):

continue # don't back up the backup ZIP files

backupZip.write(os.path.join(foldername, filename))

backupZip.close()

print('Done.')

backupToZip('C:\\delicious')

You can use os.walk() in a for loop

current folder name, the subfolders in that folder, and the filenames in that folder.

/

In the for loop, the folder is added to the ZIP file . The nested for loop can go

through each filename in the filenames list . Each of these is added to the ZIP file,

except for previously made backup ZIPs.

When you run this program, it will produce output that will look something like this:

Creating delicious_1.zip...

Adding files in C:\delicious...

Adding files in C:\delicious\cats...

Adding files in C:\delicious\waffles...

Adding files in C:\delicious\walnut...

Adding files in C:\delicious\walnut\waffles...

Done.

The second time you run it, it will put all the files in C:\delicious into a ZIP file

named delicious_2.zip, and so on.

Ideas for Similar Programs

You can walk a directory tree and add files to compressed ZIP archives in several other

programs. For example, you can write programs that do the following:

Walk a directory tree and archive just files with certain extensions, such as .txt or

.py, and nothing else.

Walk a directory tree and archive every file except the .txt and .py ones.

Find the folder in a directory tree that has the greatest number of files or the folder

that uses the most disk space.

SUMMARY

Even if you are an experienced computer user, you probably handle files manually with

the mouse and keyboard. Modern file explorers make it easy to work with a few files.

explorer.

The os and shutil modules offer functions for copying, moving, renaming, and deleting

files. When deleting files, you might want to use the send2trash module to move files to

the recycle bin or trash rather than permanently deleting them. And when writing

programs that handle files, a good idea to comment out the code that does the actual

copy/move/rename/delete and add a print() call instead so you can run the program and

verify exactly what it will do.

Often you will need to perform these operations not only on files in one folder but

also on every folder in that folder, every folder in those folders, and so on. The os.walk()

/

function handles this trek across the folders for you so that you can concentrate on what

your program needs to do with the files in them.

The zipfile module gives you a way of compressing and extracting files in .ZIP

archives through Python. Combined with the file-handling functions of os and shutil,

zipfile makes it easy to package up several files from anywhere on your hard drive. These

.ZIP files are much easier to upload to websites or send as email attachments than many

separate files.

Previous chapters of this book have provided source code for you to copy. But when

me out perfectly the first time. The

next chapter focuses on some Python modules that will help you analyze and debug your

programs so that you can quickly get them working correctly.

PRACTICE QUESTIONS

1. What is the difference between shutil.copy() and shutil.copytree()?

2. What function is used to rename files?

3. What is the difference between the delete functions in the send2trash and shutil

modules?

4. ZipFile objects have a close() method just like File close() method. What ZipFile

method is equivalent to File open() method?

PRACTICE PROJECTS

For practice, write programs to do the following tasks.

Selective Copy

Write a program that walks through a folder tree and searches for files with a certain file

extension (such as .pdf or .jpg). Copy these files from whatever location they are in to a

new folder.

Deleting Unneeded Files

get the most bang for your buck by deleting the most massive of the unwanted files. But

first you have to find them.

Write a program that walks through a folder tree and searches for exceptionally large

files or folders say, ones that have a file size of more than 100MB. (Remember that to

get a size, you can use os.path.getsize() from the os module.) Print these files with

their absolute path to the screen.

Filling in the Gaps

Write a program that finds all files with a given prefix, such as spam001.txt, spam002.txt,

and so on, in a single folder and locates any gaps in the numbering (such as if there is a

spam001.txt and spam003.txt but no spam002.txt). Have the program rename all the later

files to close this gap.

As an added challenge, write another program that can insert gaps into numbered files

so that a new file can be added.

/

MODULE 4

CHAPTER 2-DEBUGGING

/

To paraphrase an old joke among programmers, writing code accounts for 90 percent

of programming. Debugging code accounts for the other 90 percent.

Your computer w

what you intended it to do. Even professional programmers create bugs all the time, so

problem.

Fortunately, there are a few tools and techniques to identify what exactly your code is

features that can help you detect bugs early. In general, the earlier you catch bugs, the

easier they will be to fix.

Second, you will look at how to use the debugger. The debugger is a feature of Mu

that executes a program one instruction at a time, giving you a chance to inspect the

values in variables while your code runs, and track how the values change over the

course of your program. This is much slower than running the program at full speed, but

it is helpful to see the actual values in a program while it runs, rather than deducing what

the values might be from the source code.

RAISING EXCEPTIONS

Python raises an exception whenever it tries to execute invalid code. In Chapter 3, you

try and except statements so that your

program can recover from exceptions that you anticipated. But you can also raise your

code in this function and move the program execution to the except

Exceptions are raised with a raise statement. In code, a raise statement consists of the

following:

The raise keyword

A call to the Exception() function

A string with a helpful error message passed to the Exception() function

For example, enter the following into the interactive shell:

>>> raise Exception('This is the error message.')

Traceback (most recent call last):

File "<pyshell#191>", line 1, in <module>

raise Exception('This is the error message.')

Exception: This is the error message.

If there are no try and except statements covering the raise statement that raised the

e

/

Often the code that calls the function, rather than the function itself, that knows

how to handle an exception. That means you will commonly see a raise statement inside a

function and the try and except statements in the code calling the function. For example,

open a new file editor tab, enter the following code, and save the program as

boxPrint.py:

def boxPrint(symbol, width, height):

if len(symbol) != 1:

raise Exception('Symbol must be a single character string.')

if width <= 2:

raise Exception('Width must be greater than 2.')

if height <= 2:

raise Exception('Height must be greater than 2.')

print(symbol * width)

for i in range(height - 2):

print(symbol + (' ' * (width - 2)) + symbol)

print(symbol * width)

for sym, w, h in (('*', 4, 4), ('O', 20, 5), ('x', 1, 3), ('ZZ', 3, 3)):

try:

boxPrint(sym, w, h)

except Exception as err:

print('An exception happened: ' + str(err))

You can view the execution of this program at https://autbor.com/boxprint. Here

boxPrint() function that takes a character, a width, and a height, and uses

the character to make a little picture of a box with that width and height. This box shape

is printed to the screen.

Say we want the character to be a single character, and the width and height to be

greater than 2. We add if

satisfied. Later, when we call boxPrint() with various arguments, our try/except will handle

invalid arguments.

This program uses the except Exception as err form of the except statement . If an

Exception object is returned from boxPrint() , this except statement will store it in a

variable named err. We can then convert the Exception object to a string by passing it to

str() to produce a user-friendly error message . When you run this boxPrint.py, the

output will look like this:

/

* *

* *

OOOOOOOOOOOOOOOOOOOO

O O

O O

O O

OOOOOOOOOOOOOOOOOOOO

An exception happened: Width must be greater than 2.

An exception happened: Symbol must be a single character string.

Using the try and except statements, you can handle errors more gracefully instead of

letting the entire program crash.

GETTING THE TRACEBACK AS A STRING

When Python encounters an error, it produces a treasure trove of error information called

the traceback. The traceback includes the error message, the line number of the line that

caused the error, and the sequence of the function calls that led to the error. This

sequence of calls is called the call stack.

Open a new file editor tab in Mu, enter the following program, and save it as

errorExample.py:

def spam():

bacon()

def bacon():

raise Exception('This is the error message.')

spam()

When you run errorExample.py, the output will look like this:

Traceback (most recent call last):

File "errorExample.py", line 7, in <module>

spam()

File "errorExample.py", line 2, in spam

bacon()

File "errorExample.py", line 5, in bacon

/

raise Exception('This is the error message.')

Exception: This is the error message.

From the traceback, you can see that the error happened on line 5, in the bacon()

function. This particular call to bacon() came from line 2, in the spam() function, which in

turn was called on line 7. In programs where functions can be called from multiple

places, the call stack can help you determine which call led to the error.

Python displays the traceback whenever a raised exception goes unhandled. But you

can also obtain it as a string by calling traceback.format_exc(). This function is useful if you

except statement to

gracefully handle the exception. You traceback module

before calling this function.

For example, instead of crashing your program right when an exception occurs, you

can write the traceback information to a text file and keep your program running. You

the

following into the interactive shell:

>>> import traceback

>>> try:

... raise Exception('This is the error message.')

except:

... errorFile = open('errorInfo.txt', 'w')

... errorFile.write(traceback.format_exc())

... errorFile.close()

... print('The traceback info was written to errorInfo.txt.')

111

The traceback info was written to errorInfo.txt.

The 111 is the return value from the write() method, since 111 characters were written

to the file. The traceback text was written to errorInfo.txt.

Traceback (most recent call last):

File "<pyshell#28>", line 2, in <module>

Exception: This is the error message.

logging module, which is more

effective than simply writing this error information to text files.

/

ASSERTIONS

An assertion

wrong. These sanity checks are performed by assert statements. If the sanity check fails,

then an AssertionError exception is raised. In code, an assert statement consists of the

following:

The assert keyword

A condition (that is, an expression that evaluates to True or False)

A comma

A string to display when the condition is False

In plain English, an assert that the condition holds true, and if

following into the interactive shell:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]

>>> ages.sort()

>>> ages

[15, 17, 22, 26, 47, 54, 57, 73, 80, 92]

>>> assert

ages[0] <= ages[-1] # Assert that the first age is <= the last age.

The assert statement here asserts that the first item in ages should be less than or equal

to the last one. This is a sanity check; if the code in sort() is bug-free and did its job, then

the assertion would be true.

Because the ages[0] <= ages[-1] expression evaluates to True, the assert statement does

nothing.

However, pretend we had a bug in our code. Say we accidentally called the

reverse() list method instead of the sort() list method. When we enter the following in the

interactive shell, the assert statement raises an AssertionError:

>>> ages = [26, 57, 92, 54, 22, 15, 17, 80, 47, 73]

>>> ages.reverse()

>>> ages

[73, 47, 80, 17, 15, 22, 54, 92, 57, 26]

>>> assert ages[0] <= ages[-1] # Assert that the first age is <= the last age.

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

AssertionError

/

Unlike exceptions, your code should not handle assert statements with try and except; if

an assert fails, your program should

between the original cause of the bug and when you first notice the bug. This will reduce

the amount of code you will have to check before finding the cause.

Assertions are for programmer errors, not user errors. Assertions should only fail

while the program is under development; a user should never see an assertion error in a

finished program. For errors that your program can run into as a normal part of its

operation (such as a file not being found or the user entering invalid data), raise an

exception instead of detecting it with an assert statement. You assert

statements in place of raising exceptions, because users can choose to turn off assertions.

If you run a Python script with python -O myscript.py instead of python myscript.py, Python

will skip assert a

program and need to run it in a production setting that requires peak performance.

then.)

the

previous ages example was set to [10, 3, 2, 1, 20], then the assert ages[0] <= ages[-1] assertion

that was less than or equal to the last age, which is the only thing the assertion checked

for.

Using an Assertion in a Traffic Light Simulation

the stoplights at an intersection is a dictionary with keys 'ns' and 'ew', for the stoplights

facing north-south and east-west, respectively. The values at these keys will be one of the

strings 'green', 'yellow', or 'red'. The code would look something like this:

market_2nd = {'ns': 'green', 'ew': 'red'}

mission_16th = {'ns': 'red', 'ew': 'green'}

These two variables will be for the intersections of Market Street and 2nd Street, and

Mission Street and 16th Street. To start the project, you want to write a switchLights()

function, which will take an intersection dictionary as an argument and switch the lights.

At first, you might think that switchLights() should simply switch each light to the next

color in the sequence: Any 'green' values should change to 'yellow', 'yellow' values should

change to 'red', and 'red' values should change to 'green'. The code to implement this idea

might look like this:

def switchLights(stoplight):

for key in stoplight.keys():

/

if stoplight[key] == 'green':

stoplight[key] = 'yellow'

elif stoplight[key] == 'yellow':

stoplight[key] = 'red'

elif stoplight[key] == 'red':

stoplight[key] = 'green'

switchLights(market_2nd)

You may already see the problem with this code, but pretend you wrote the rest

of the simulation code, thousands of lines long, without noticing it. When you finally do

run the simulation, the pr but your virtual cars do!

drivers. It could take hours to trace the bug back to the switchLights() function.

But if while writing switchLights() you had added an assertion to check that at least one

of the lights is always red, you might have included the following at the bottom of the

function:

assert 'red' in stoplight.values(), 'Neither light is red! ' + str(stoplight)

With this assertion in place, your program would crash with this error message:

Traceback (most recent call last):

File "carSim.py", line 14, in <module>

switchLights(market_2nd)

File "carSim.py", line 13, in switchLights

assert 'red' in stoplight.values(), 'Neither light is red! ' +

str(stoplight)

AssertionError: Neither light is red! {'ns': 'yellow', 'ew': 'green'}

The important line here is the AssertionError . While your program crashing is not

ideal, it immediately points out that a sanity check failed: neither direction of traffic has

a red light, meaning that traffic could be going both ways. By failing fast early in the

uture debugging effort.

LOGGING

print() while

logging to debug your code. Logging is

a great way to understand happening in your program and in what order

/

logging module makes it easy to create a record of custom messages

that you write. These log messages will describe when the program execution has

reached the logging function call and list any variables you have specified at that point in

time. On the other hand, a missing log message indicates a part of the code was skipped

and never executed.

Using the logging Module

To enable the logging module to display log messages on your screen as your program

runs, copy the following to the top of your program (but under the #! python shebang

line):

import logging

logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s - %(levelname)

s - %(message)s')

need to worry too much about how this works, but basically, when Python

logs an event, it creates a LogRecord object that holds information about that event. The

logging basicConfig() function lets you specify what details about the LogRecord

object you want to see and how you want those details displayed.

Say you wrote a function to calculate the factorial of a number. In mathematics,

factorial 4 is 1 × 2 × 3 × 4, or 24. Factorial 7 is 1 × 2 × 3 × 4 × 5 × 6 × 7, or 5,040. Open

a new file editor tab and enter the following code. It has a bug in it, but you will also

enter several log messages to help yourself figure out what is going wrong. Save the

program as factorialLog.py.

import logging

logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s

- %(message)s')

logging.debug('Start of program')

def factorial(n):

logging.debug('Start of factorial(%s%%)' % (n))

total = 1

for i in range(n + 1):

total *= i

logging.debug('i is ' + str(i) + ', total is ' + str(total))

logging.debug('End of factorial(%s%%)' % (n))

return total

/

print(factorial(5))

logging.debug('End of program')

Here, we use the logging.debug() function when we want to print log information. This

debug() function will call basicConfig(), and a line of information will be printed. This

information will be in the format we specified in basicConfig() and will include the

messages we passed to debug(). The print(factorial(5)) call is part of the original program, so

the result is displayed even if logging messages are disabled.

The output of this program looks like this:

2019-05-23 16:20:12,664 - DEBUG - Start of program

2019-05-23 16:20:12,664 - DEBUG - Start of factorial(5)

2019-05-23 16:20:12,665 - DEBUG - i is 0, total is 0

2019-05-23 16:20:12,668 - DEBUG - i is 1, total is 0

2019-05-23 16:20:12,670 - DEBUG - i is 2, total is 0

2019-05-23 16:20:12,673 - DEBUG - i is 3, total is 0

2019-05-23 16:20:12,675 - DEBUG - i is 4, total is 0

2019-05-23 16:20:12,678 - DEBUG - i is 5, total is 0

2019-05-23 16:20:12,680 - DEBUG - End of factorial(5)

0

2019-05-23 16:20:12,684 - DEBUG - End of program

The factorial() function is returning 0 as the factorial of 5 for

loop should be multiplying the value in total by the numbers from 1 to 5. But the log

messages displayed by logging.debug() show that the i variable is starting at 0 instead of 1.

Since zero times anything is zero, the rest of the iterations also have the wrong value for

total. Logging messages provide a trail of breadcrumbs that can help you figure out when

things started to go wrong.

Change the for i in range(n + 1): line to for i in range(1, n + 1):, and run the program again.

The output will look like this:

2019-05-23 17:13:40,650 - DEBUG - Start of program

2019-05-23 17:13:40,651 - DEBUG - Start of factorial(5)

2019-05-23 17:13:40,651 - DEBUG - i is 1, total is 1

2019-05-23 17:13:40,654 - DEBUG - i is 2, total is 2

2019-05-23 17:13:40,656 - DEBUG - i is 3, total is 6

2019-05-23 17:13:40,659 - DEBUG - i is 4, total is 24

2019-05-23 17:13:40,661 - DEBUG - i is 5, total is 120

2019-05-23 17:13:40,661 - DEBUG - End of factorial(5)

/

120

2019-05-23 17:13:40,666 - DEBUG - End of program

The factorial(5) call correctly returns 120. The log messages showed what was going on

inside the loop, which led straight to the bug.

You can see that the logging.debug() calls printed out not just the strings passed to them

but also a timestamp and the word DEBUG.

Typing import logging and logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %

(levelname)s - %(message)s') is somewhat unwieldy. You may want to use print() calls instead,

spending a lot of time removing print() calls from your code for each log message. You

might even accidentally remove some print() calls that were being used for nonlog

messages. The nice thing with

as many as you like, and you can always disable them later by adding a single

logging.disable(logging.CRITICAL) call. Unlike print(), the logging module makes it easy to

switch between showing and hiding log messages.

Log messages are intended for the programmer, not the user.

about the contents of some dictionary value you need to see to help with debugging; use

a log message for something like that. For messages that the user will want to see, like

File not found or Invalid input, please enter a number, you should use a print() call. You

want to deprive the user of useful information after disabled log messages.

Logging Levels

Logging levels provide a way to categorize your log messages by importance. There are

five logging levels, described in Table 11-1 from least to most important. Messages can

be logged at each level using a different logging function.

Table 11-1: Logging Levels in Python

Level Logging function Description

DEBUG logging.debug() The lowest level. Used

for small details. Usually

 you care about these

messages only when

diagnosing problems.

/

Level Logging function Description

INFO logging.info() Used to record

information on general

 events in your program or

 confirm that things are

 working at their point in

 the program.

WARNING logging.warning() Used to indicate a

 potential problem that

program from working

 but might do so in the

 future.

ERROR logging.error() Used to record an error

 that caused the program

 to fail to do something.

CRITICAL logging.critical() The highest level. Used to

 indicate a fatal error that

 has caused or is about to

 cause the program to stop

 running entirely.

Your logging message is passed as a string to these functions. The logging levels are

suggestions. Ultimately, it is up to you to decide which category your log message falls

into. Enter the following into the interactive shell:

>>> import logging

>>> logging.basicConfig(level=logging.DEBUG, format=' %(asctime)s -

%(levelname)s - %(message)s')

>>> logging.debug('Some debugging details.')

2019-05-18 19:04:26,901 - DEBUG - Some debugging details.

>>> logging.info('The logging module is working.')

2019-05-18 19:04:35,569 - INFO - The logging module is working.

>>> logging.warning('An error message is about to be logged.')

2019-05-18 19:04:56,843 - WARNING - An error message is about to be logged.

>>> logging.error('An error has occurred.')

2019-05-18 19:05:07,737 - ERROR - An error has occurred.

/

>>> logging.critical('The program is unable to recover!')

2019-05-18 19:05:45,794 - CRITICAL - The program is unable to recover!

The benefit of logging levels is that you can change what priority of logging message

you want to see. Passing logging.DEBUG to the basicConfig() level keyword

argument will show messages from all the logging levels (DEBUG being the lowest

level). But after developing your program some more, you may be interested only in

errors. In that case, you can set basicConfig() level argument to logging.ERROR. This will

show only ERROR and CRITICAL messages and skip the DEBUG, INFO, and

WARNING messages.

Disabling Logging

cluttering the screen. The logging.disable()

go into your program and remove all the logging calls by hand. You simply pass

logging.disable() a logging level, and it will suppress all log messages at that level or lower.

So if you want to disable logging entirely, just add logging.disable(logging.CRITICAL) to

your program. For example, enter the following into the interactive shell:

>>> import logging

>>> logging.basicConfig(level=logging.INFO, format=' %(asctime)s -

%(levelname)s - %(message)s')

>>> logging.critical('Critical error! Critical error!')

2019-05-22 11:10:48,054 - CRITICAL - Critical error! Critical error!

>>> logging.disable(logging.CRITICAL)

>>> logging.critical('Critical error! Critical error!')

>>> logging.error('Error! Error!')

Since logging.disable() will disable all messages after it, you will probably want to add

it near the import logging line of code in your program. This way, you can easily find it to

comment out or uncomment that call to enable or disable logging messages as needed.

Logging to a File

Instead of displaying the log messages to the screen, you can write them to a text file.

The logging.basicConfig() function takes a filename keyword argument, like so:

import logging

logging.basicConfig(filename='myProgramLog.txt', level=logging.DEBUG, format='

%(asctime)s - %(levelname)s - %(message)s')

/

The log messages will be saved to myProgramLog.txt. While logging messages are

Writing the logging messages to a file will keep your screen clear and store the messages

so you can read them after running the program. You can open this text file in any text

editor, such as Notepad or TextEdit.

MU S DEBUGGER

The debugger is a feature of the Mu editor, IDLE, and other editor software that allows

you to execute your program one line at a time. The debugger will run a single line of

ch time as you want to examine the values in the

tracking down bugs.

To run a program under debugger, click the Debug button in the top row of

buttons, next to the Run button. Along with the usual output pane at the bottom, the

Debug Inspector pane will open along the right side of the window. This pane lists the

current value of variables in your program. In Figure 11-1, the debugger has paused the

execution of the program just before it would have run the first line of code. You can see

this line highlighted in the file editor.

Figure 11-1: Mu running a program under the debugger

Debugging mode also adds the following new buttons to the top of the editor:

Continue, Step Over, Step In, and Step Out. The usual Stop button is also available.

Continue

/

Clicking the Continue button will cause the program to execute normally until it

terminates or reaches a breakpoint. (I will describe breakpoints later in this chapter.) If

you are done debugging and want the program to continue normally, click the Continue

button.

Step In

Clicking the Step In button will cause the debugger to execute the next line of code and

then pa

that function and jump to the first line of code of that function.

Step Over

Clicking the Step Over button will execute the next line of code, similar to the Step In

button. However, if the next line of code is a function call, the Step Over button will

and the debugger will pause as soon as the function call returns. For example, if the next

line of code calls a spam()

function, you can click Step Over to execute the code in the function at normal speed,

and then pause when the function returns. For this reason, using the Over button is more

common than using the Step In button.

Step Out

Clicking the Step Out button will cause the debugger to execute lines of code at full

speed until it returns from the current function. If you have stepped into a function call

with the Step In button and now simply want to keep executing instructions until you get

call.

Stop

If you want to stop debugging entirely and not bother to continue executing the rest of

the program, click the Stop button. The Stop button will immediately terminate the

program.

Debugging a Number Adding Program

Open a new file editor tab and enter the following code:

print('Enter the first number to add:')

first = input()

print('Enter the second number to add:')

second = input()

print('Enter the third number to add:')

/

third = input()

print('The sum is ' + first + second + third)

Save it as buggyAddingProgram.py and run it first without the debugger enabled. The

program will output something like this:

Enter the first number to add:

5

Enter the second number to add:

3

Enter the third number to add:

42

The sum is 5342

this time under the debugger.

When you click the Debug button, the program pauses on line 1, which is the line of

code it is about to execute. Mu should look like Figure 10-1.

Click the Step Over button once to execute the first print() call. You should use Step

Over i print()

-in

functions.) The debugger moves on to line 2, and highlights line 2 in the file editor, as

shown in Figure 11-2. This shows you where the program execution currently is.

Figure 11-2: The Mu editor window after clicking Step Over

/

Click Step Over again to execute the input() function call. The highlighting will go

away while Mu waits for you to type something for the input() call into the output pane.

Enter 5 and press ENTER. The highlighting will return.

Keep clicking Step Over, and enter 3 and 42 as the next two numbers. When the

debugger reaches line 7, the final print() call in the program, the Mu editor window

should look like Figure 11-3.

Figure 11-3: The Debug Inspector pane on the right side shows that the variables are set to strings instead

of integers, causing the bug.

In the Debug Inspector pane, you should see that the first, second, and third variables

are set to string values '5', '3', and '42' instead of integer values 5, 3, and 42. When the last

line is executed, Python concatenates these strings instead of adding the numbers

together, causing the bug.

Stepping through the program with the debugger is helpful but can also be slow.

You

can configure the debugger to do this with breakpoints.

Breakpoints

A breakpoint can be set on a specific line of code and forces the debugger to pause

whenever the program execution reaches that line. Open a new file editor tab and enter

the following program, which simulates flipping a coin 1,000 times. Save it as

coinFlip.py.

import random

heads = 0

/

for i in range(1, 1001):

if random.randint(0, 1) == 1:

heads = heads + 1

if i == 500:

print('Halfway done!')

print('Heads came up ' + str(heads) + ' times.')

The random.randint(0, 1) call will return 0 half of the time and 1 the other half of the

time. This can be used to simulate a 50/50 coin flip where 1 represents heads. When you

run this program without the debugger, it quickly outputs something like the following:

Halfway done!

Heads came up 490 times.

If you ran this program under the debugger, you would have to click the Step Over

button thousands of times before the program terminated. If you were interested in the

value of heads

flips have been completed, you could instead just set a breakpoint on the line

print('Halfway done!') . To set a breakpoint, click the line number in the file editor to cause

a red dot to appear, marking the breakpoint like in Figure 11-4.

Figure 11-4: Setting a breakpoint causes a red dot (circled) to appear next to the line number.

You if statement line, since the if statement is

executed on every single iteration through the loop. When you set the breakpoint on the

code in the if statement, the debugger breaks only when the execution enters the if clause.

The line with the breakpoint will have a red dot next to it. When you run the program

under the debugger, it will start in a paused state at the first line, as usual. But if you

click Continue, the program will run at full speed until it reaches the line with the

/

breakpoint set on it. You can then click Continue, Step Over, Step In, or Step Out to

continue as normal.

If you want to remove a breakpoint, click the line number again. The red dot will go

away, and the debugger will not break on that line in the future.

SUMMARY

Assertions, exceptions, logging, and the debugger are all valuable tools to find and

prevent bugs in your program. Assertions with the Python assert statement are a good way

from and should fail fast. Otherwise, you should raise an exception.

An exception can be caught and handled by the try and except statements. The logging

module is a good way to look into your code while running and is much more

convenient to use than the print() function because of its different logging levels and

ability to log to a text file.

The debugger lets you step through your program one line at a time. Alternatively,

you can run your program at normal speed and have the debugger pause execution

whenever it reaches a line with a breakpoint set. Using the debugger, you can see the

lifetime.

These debugging tools and techniques will help you write programs that work.

Accidentally introducing bugs into your code is a fact of life, no matter how many years

of coding experience you have.

PRACTICE QUESTIONS

1. Write an assert statement that triggers an AssertionError if the variable spam is an integer

less than 10.

2. Write an assert statement that triggers an AssertionError if the variables eggs and bacon

contain strings that are the same as each other, even if their cases are different (that

is, 'hello' and 'hello' are considered the same, and 'goodbye' and 'GOODbye' are also

considered the same).

3. Write an assert statement that always triggers an AssertionError.

4. What are the two lines that your program must have in order to be able to call

logging.debug()?

5. What are the two lines that your program must have in order to have logging.debug()

send a logging message to a file named programLog.txt?

6. What are the five logging levels?

7. What line of code can you add to disable all logging messages in your program?

8. Why is using logging messages better than using print() to display the same message?

9. What are the differences between the Step Over, Step In, and Step Out buttons in the

debugger?

10. After you click Continue, when will the debugger stop?

11. What is a breakpoint?

12. How do you set a breakpoint on a line of code in Mu?

PRACTICE PROJECT

For practice, write a program that does the following.

Debugging Coin Toss

The following program is meant to be a simple coin toss guessing game. The player gets

two guesses an easy game). However, the program has several bugs in it. Run

through the program a few times to find the bugs that keep the program from working

correctly.

import random

guess = ''

while guess not in ('heads', 'tails'):

print('Guess the coin toss! Enter heads or tails:')

guess = input()

toss = random.randint(0, 1) # 0 is tails, 1 is heads

if toss == guess:

print('You got it!')

else:

print('Nope! Guess again!')

guesss = input()

if toss == guess:

print('You got it!')

else:

print('Nope. You are really bad at this game.')

 MODULE 5

 CHAPTER 01

CLASSES AND OBJECTS

1. Programmer-defined types

 We have used many of Python’s built-in types; now we are going to define a new type. As an

example, we will create a type called Point that represents a point in two-dimensional space.

 In mathematical notation, points are often written in parentheses with a comma separating the

coordinates.

 For example, (0, 0) represents the origin, and (x, y) represents the point x units to the right and y

units up from the origin.

 There are several ways we might represent points in Python:

1. We could store the coordinates separately in two variables, x and y.

2. We could store the coordinates as elements in a list or tuple.

3. We could create a new type to represent points as objects.

 Creating a new type is more complicated than the other options, but it has advantages that will

be apparent soon.

 A programmer-defined type is also called a class. A class definition looks like this:

 The header indicates that the new class is called Point. The body is a docstring that ex-

plains what the class is for. You can define variables and methods inside a class

definition, but we will get back to that later.

 Defining a class named Point creates a class object.

 Because Point is defined at the top level, its “full name” is __main__.Point.

 The class object is like a factory for creating objects. To create a Point, you call Point as if it

were a function.

 The return value is a reference to a Point object, which we assign to blank.

 Creating a new object is called instantiation, and the object is an instance of the class.

 When you print an instance, Python tells you what class it belongs to and where it is stored in

memory (the prefix 0x means that the following number is in hexadecimal).

class Point:

"""Represents a point in 2-D space."""

>>> Point

<class ' main .Point'>

blank = Point()

blank

<__main__.Point object at 0xb7e9d3ac>

2. Attributes

 You can assign values to an instance using dot notation:

 This syntax is similar to the syntax for selecting a variable from a module, such as math.pi or

string.whitespace .

 In this case, though, we are assigning values to named elements of an object. These elements are

called attributes.

 A state diagram that shows an object and its attributes is called an object diagram; see Figure

15.1.

 The variable blank refers to a Point object, which contains two attributes. Each attribute refers to

a floating-point number.

 You can read the value of an attribute using the same syntax:

blank.y

4.0

x = blank.x

x

3.0

 The expression blank.x means, “Go to the object blank refers to and get the value of x.” In the

example, we assign that value to a variable named x. There is no conflict between the variable x

and the attribute x.

 You can use dot notation as part of any expression. For example:

'(%g, %g)' % (blank.x, blank.y)

'(3.0, 4.0)'

distance = math.sqrt(blank.x**2 + blank.y**2)

distance

5.0

 You can pass an instance as an argument in the usual way. For example:

 print_point takes a point as an argument and displays it in mathematical notation. To invoke it,

you can pass blank as an argument:

 Inside the function, p is an alias for blank, so if the function modifies p, blank changes.

3. Rectangles

 Sometimes it is obvious what the attributes of an object should be, but other times you have to

make decisions.

blank.x = 3.0

blank.y = 4.0

def print_point(p):

print('(%g, %g)' % (p.x, p.y))

print_point(blank) (3.0, 4.0)

 For example, imagine you are designing a class to represent rectangles. What attributes would

you use to specify the location and size of a rectangle?

 You can ignore angle; to keep things simple, assume that the rectangle is either vertical or

horizontal.

 There are at least two possibilities:

1. You could specify one corner of the rectangle (or the center), the width, and the height.

2. You could specify two opposing corners.

 At this point it is hard to say whether either is better than the other, so we’ll implement the first

one, just as an example.

 Here is the class definition:

 The docstring lists the attributes: width and height are numbers; corner is a Point object that

specifies the lower-left corner.

 To represent a rectangle, you have to instantiate a Rectangle object and assign values to the

attributes:

 The expression box.corner.x means, “Go to the object box refers to and select the attribute

named corner; then go to that object and select the attribute named x.”

 Figure 15.2 shows the state of this object. An object that is an attribute of another object is

embedded.

4. Instances as return values

 Functions can return instances. For example, find_center takes a Rectangle as an argument and

returns a Point that contains the coordinates of the center of the Rectangle:

class Rectangle:

"""Represents a rectangle.

attributes: width, height, corner."""

box = Rectangle()

box.width = 100.0

box.height = 200.0

box.corner = Point()

box.corner.x = 0.0

box.corner.y = 0.0

def find_center(rect):

p = Point()

p.x = rect.corner.x + rect.width/2

p.y = rect.corner.y + rect.height/2

return p

 Here is an example that passes box as an argument and assigns the resulting Point to center:

5. Objects are mutable

 You can change the state of an object by making an assignment to one of its attributes. For

example, to change the size of a rectangle without changing its position, you can modify the

values of width and height:

 You can also write functions that modify objects.

 For example, grow_rectangle takes a Rectangle object and two numbers, dwidth and dheight,

and adds the numbers to the width and height of the rectangle:

 Here is an example that demonstrates the effect:

 Inside the function, rect is an alias for box, so when the function modifies rect, box changes.

6. Copying

 Aliasing can make a program difficult to read because changes in one place might have

unexpected effects in another place.

 It is hard to keep track of all the variables that might refer to a given object.

 Copying an object is often an alternative to aliasing. The copy module contains a function called

copy that can duplicate any object:

p1 = Point()

p1.x = 3.0

p1.y = 4.0

import copy

p2 = copy.copy(p1)

 p1 and p2 contain the same data, but they are not the same Point.

center = find_center(box)

print_point(center)

(50, 100)

box.width = box.width + 50

box.height = box.height + 100

def grow_rectangle(rect, dwidth, dheight):

rect.width += dwidth

rect.height += dheight

box.width, box.height (150.0, 300.0)

grow_rectangle(box, 50, 100)

box.width, box.height

(200.0, 400.0)

print_point(p1)

(3, 4)

print_point(p2)

(3, 4)

p1 is p2

False

p1 == p2

False

 The is operator indicates that p1 and p2 are not the same object, which is what we expected. But

you might have expected == to yield True because these points contain the same data.

 In that case, you will be disappointed to learn that for instances, the default behavior of the ==

operator is the same as the is operator; it checks object identity, not object equivalence.

 That’s because for programmer-defined types, Python doesn’t know what should be considered

equivalent. At least, not yet.

 If you use copy.copy to duplicate a Rectangle, you will find that it copies the Rectangle object

but not the embedded Point.

box2 = copy.copy(box)

box2 is box

False

box2.corner is box.corner

True

 Figure 15.3 shows what the object diagram looks like. This operation is called a shallow copy

because it copies the object and any references it contains, but not the embedded objects.

 For most applications, this is not what you want.

 In this example, invoking grow_rectangle on one of the Rectangles would not affect the other,

but invoking move_rectangle on either would affect both! This behavior is confusing and error-

prone.

 Fortunately, the copy module provides a method named deepcopy that copies not only the object

but also the objects it refers to, and the objects they refer to, and so on. You will not be surprised

to learn that this operation is called a deep copy.

box3 = copy.deepcopy(box)

box3 is box

False

box3.corner is box.corner

False

 box3 and box are completely separate objects.

1. Time

CHAPTER 02

CLASSES AND FUNCTIONS

 As another example of a programmer-defined type, we’ll define a class called Time that records

the time of day. The class definition looks like this:

 We can create a new Time object and assign attributes for hours, minutes, and seconds:

 The state diagram for the Time object looks like Figure below.

2. Pure functions

 In the next few sections, we’ll write two functions that add time values.

 They demonstrate two kinds of functions: pure functions and modifiers.

 They also demonstrate a development plan I’ll call prototype and patch, which is a way of tackling a
complex problem by starting with a simple prototype and incrementally dealing with the complications.

 Here is a simple prototype of add_time:

 The function creates a new Time object, initializes its attributes, and returns a reference to the

new object.

 This is called a pure function because it does not modify any of the objects passed to it as

arguments and it has no effect, like displaying a value or getting user input, other than returning a

value.

class Time:

"""Represents the time of day.

attributes: hour, minute, second """

time = Time()

time.hour = 11

time.minute = 59
time.second = 30

def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

return sum

 To test this function, let us create two Time objects: start contains the start time of a movie, like Monty

Python and the Holy Grail, and duration contains the run time of the movie, which is one hour 35

minutes.

 add_time figures out when the movie will be done.

 The result, 10:80:00 might not be what you were hoping for.

 The problem is that this function does not deal with cases where the number of seconds or

minutes adds up to more than sixty.

 When that happens, we have to “carry” the extra seconds into the minute column or the

extra minutes into the hour column.

 Here’s an improved version:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 0

>>> duration = Time()

>>> duration.hour = 1

>>> duration.minute = 35

>>> duration.second = 0

>>> done = add_time(start, duration)

>>> print_time(done)

10:80:00

def add_time(t1, t2):

sum = Time()

sum.hour = t1.hour + t2.hour

sum.minute = t1.minute + t2.minute

sum.second = t1.second + t2.second

if sum.second >= 60: sum.second -= 60
sum.minute += 1

if sum.minute >= 60: sum.minute -= 60

sum.hour += 1

return sum

3. Modifiers

 Sometimes it is useful for a function to modify the objects it gets as parameters.

 In that case, the changes are visible to the caller. Functions that work this way are called modifiers.

 increment, which adds a given number of seconds to a Time object, can be written naturally as a

modifier. Here is a rough draft:

 The first line performs the basic operation; the remainder deals with the special cases we saw before.

 Is this function correct? What happens if seconds is much greater than sixty?

 In that case, it is not enough to carry once; we have to keep doing it until time.second is less than

sixty.

 One solution is to replace the if statements with while statements. That would make the function

correct, but not very efficient.

 Anything that can be done with modifiers can also be done with pure functions.

4. Prototyping versus planning

 The development plan, i.e. demonstrating is called “prototype and patch”. For each function, we wrote

a prototype that performed the basic calculation and then tested it, patching errors along the way.

 This approach can be effective, especially if you don’t yet have a deep understanding of the

problem.

 But incremental corrections can generate code that is unnecessarily complicated—since it deals with

many special cases—and unreliable—since it is hard to know if you have found all the errors.

 Here is a function that converts Times to integers:

def increment(time, seconds):

time.second += seconds

if time.second >= 60: time.second -= 60

time.minute += 1

if time.minute >= 60: time.minute -= 60

time.hour += 1

def time_to_int(time):

minutes = time.hour * 60 +time.minute

seconds = minutes * 60 + time.second return seconds

 And here is a function that converts an integer to a Time (recall that divmod divides the first

argument by the second and returns the quotient and remainder as a tuple).

 Once we are convinced they are correct, you can use them to rewrite:

 This version is shorter than the original, and easier to verify.

def int_to_time(seconds):

time = Time()

minutes, time.second = divmod(seconds, 60)

time.hour, time.minute = divmod(minutes, 60)

return time

def add_time(t1, t2):

seconds = time_to_int(t1) + time_to_int(t2)

return int_to_time(seconds)

MODULE5

CHAPTER 03

CLASSES AND METHODS

1. Object-Oriented Features

 Python is an object-oriented programming language, which means that it provides features that support

object-oriented programming, which has these defining characteristics:

• Programs include class and method definitions.

• Most of the computation is expressed in terms of operations on objects.

• Objects often represent things in the real world, and methods often correspond to the ways things in the

real world interact.

 A method is a function that is associated with a particular class.

 Methods are semantically the same as functions, but there are two syntactic differences:

 Methods are defined inside a class definition in order to make the relationship between the class and the

method explicit.

 The syntax for invoking a method is different from the syntax for calling a function.

2. Printing Objects

 We already defined a class named and also wrote a function named print_time:

class Time:

"""Represents the time of day."""

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

 To call this function, we have to pass a Time object as an argument:

>>> start = Time()

>>> start.hour = 9

>>> start.minute = 45

>>> start.second = 00

>>> print_time(start)

09:45:00

 To make print_time a method, all we have to do is move the function definition inside the class definition.

Notice the change in indentation.

 Now there are two ways to call print_time. The first (and less common) way is to use function

syntax:

 In this use of dot notation, Time is the name of the class, and print_time is the name of the

method. start is passed as a parameter.

 The second (and more concise) way is to use method syntax:

 In this use of dot notation, print_time is the name of the method (again), and start is the object the method

is invoked on, which is called the subject.

 Just as the subject of a sentence is what the sentence is about, the subject of a method invocation is what

the method is about.

 Inside the method, the subject is assigned to the first parameter, so in this case start is assigned to time.

 By convention, the first parameter of a method is called self, so it would be more common to write

print_time like this:

 The reason for this convention is an implicit metaphor:

• The syntax for a function call, print_time(start), suggests that the function is the active agent. It says

something like, “Hey print_time! Here’s an object for you to print.”

• In object-oriented programming, the objects are the active agents. A method invocation like

class Time:

def print_time(time):

print('%.2d:%.2d:%.2d' % (time.hour, time.minute, time.second))

>>>Time.print_time(start)

09:45:00

>>> start.print_time()

09:45:00

class Time:

def print_time(self):

print('%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second))

start.print_time() says “Hey start! Please print yourself.”

3. Another Example

 Here’s a version of increment rewritten as a method:

 This version assumes that time_to_int is written as a method. Also, note that it is a pure function, not a

modifier.

 Here’s how you would invoke increment:

 The subject, start, gets assigned to the first parameter, self. The argument, 1337, gets assigned to the

second parameter, seconds.

 This mechanism can be confusing, especially if you make an error. For example, if you invoke

increment with two arguments, you get:

 The error message is initially confusing, because there are only two arguments in parentheses. But the

subject is also considered an argument, so all together that’s three.

 By the way, a positional argument is an argument that doesn’t have a parameter name; that is, it is not a

keyword argument. In this function call:

 parrot and cage are positional, and dead is a keyword argument.

inside class Time:

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

>>> start.print_time()

09:45:00
>>> end = start.increment(1337)
>>> end.print_time()

10:07:17

>>> end = start.increment(1337, 460)

TypeError: increment() takes 2 positional arguments but 3 were given

sketch(parrot, cage, dead=True)

4. A More Complicated Example

 Rewriting is_after is slightly more complicated because it takes two Time objects as parameters.

 In this case it is conventional to name the first parameter self and the second parameter other:

 To use this method, you have to invoke it on one object and pass the other as an argument:

5. The init Method

 The init method (short for “initialization”) is a special method that gets invoked when an object is

instantiated.

 Its full name is init (two underscore characters, followed by init, and then two more underscores).

 An init method for the Time class might look like this:

 It is common for the parameters of init to have the same names as the attributes.

 The statement

self.hour = hour

 stores the value of the parameter hour as an attribute of self.

 The parameters are optional, so if you call Time with no arguments, you get the default values:

inside class Time:

def is_after(self, other):

return self.time_to_int() > other.time_to_int()

>>> end.is_after(start)

True

inside class Time:

def _init (self, hour=0, minute=0, second=0):

self.hour = hour

self.minute = minute

self.second = second

>>> time = Time()

>>> time.print_time()

00:00:00

 If we provide one argument, it overrides hour:

 If we provide two arguments, they override hour and minute.

 And if we provide three arguments, they override all three default values

6. The _str_ Method

 str is a special method, like init , that is supposed to return a string representa- tion of an

object.

 For example, here is a str method for Time objects:

 When you print an object, Python invokes the str method:

7. Operator Overloading

 By defining other special methods, you can specify the behavior of operators on programmer-defined types.

 For example, if we define a method named add for the Time class, you can use the + operator on Time

objects.

 Here is what the definition might look like:

 And here is how we could use it:

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> time = Time(9, 45)

>>> print(time)

09:45:00

>>> time = Time(9, 45)

>>> time.print_time()

09:45:00

>>> time = Time (9)

>>> time.print_time()

09:00:00

inside class Time:

def str (self):

return '%.2d:%.2d:%.2d' % (self.hour, self.minute, self.second)

def _add_(self,other):

seconds=self.time_to_int()+other.time_to_int()

return int_to_time(seconds)

 When you apply the + operator to Time objects, Python invokes add .

 When you print the result, Python invokes str . So there is a lot happening behind the scenes!

 Changing the behavior of an operator so that it works with programmer-defined types is called operator

overloading.

 For every operator in Python there is a corresponding special method, like add .

8. Type-Based Dispatch

 The following is the version of _add_ that checks the type of other and invokes either add_time or

increment:

 The built-in function isinstance takes a value and a class object, and returns True if the value is an instance

of the class.

 If other is a Time object, add invokes add_time. Otherwise it assumes that the parameter is a number

and invokes increment.

 This operation is called a type-based dispatch because it dispatches the computation to different methods

based on the type of the arguments.

 Here are examples that use the + operator with different types:

>>> print(start + duration)

11:20:00

def add (self,other):

if isintance(other, Time):

return self.add_time(other)

else:

return self.increment(other)

def add_time(self, other):

seconds = self.time_to_int() + other.time_to_int()

return int_to_time(seconds)

def increment(self, seconds):

seconds += self.time_to_int()

return int_to_time(seconds)

>>> start = Time(9, 45)

>>> duration = Time(1, 35)

>>> print(start + duration)

11:20:00

>>> print(start + 1337)

10:07:17

 Unfortunately, this implementation of addition is not commutative. If the integer is the first operand, you get

 The problem is, instead of asking the Time object to add an integer, Python is asking an integer to add a

Time object, and it doesn’t know how.

 But there is a clever solution for this problem: the special method radd , which stands for “right-side

add”.

 This method is invoked when a Time object appears on the right side of the + operator. Here’s the

definition:

9. Polymorphism

 Type-based dispatch is useful when it is necessary, but (fortunately) it is not always necessary. Often you

can avoid it by writing functions that work correctly for arguments with different types.

 Many of the functions we wrote for strings also work for other sequence types. For example, we used

histogram to count the number of times each letter appears in a word.

 This function also works for lists, tuples, and even dictionaries, as long as the elements of s are hashable, so

they can be used as keys in d:

>>> print(1337 + start)

TypeError: unsupported operand type(s) for +: 'int' and 'instance'

inside class Time:

def radd (self, other):

return self. add (other)

 And here’s how it’s used:

>>> print(1337 + start)

10:07:17

def

histogram(s):

d = dict()

for c in s:

if c not in d:

d[c] = 1

else:

d[c] = d[c]+1

return d

 Functions that work with several types are called polymorphic. Polymorphism can facilitate code reuse.

 For example, the built-in function sum, which adds the elements of a sequence, works as long as the

elements of the sequence support addition.

 In general, if all of the operations inside a function work with a given type, the function works with that

type.

 The best kind of polymorphism is the unintentional kind, where you discover that a func- tion you already

wrote can be applied to a type you never planned for.

10. Interface and implementation

 One of the goals of object-oriented design is to make software more maintainable, which means that you

can keep the program working when other parts of the system change, and modify the program to meet new

requirements.

 A design principle that helps achieve that goal is to keep interfaces separate from implementations. For

objects, that means that the methods a class provides should not depend on how the attributes are

represented. For example, in this chapter we developed a class that represents a time of day.

 Methods provided by this class include time_to_int, is_after, and add_time. We could implement those

methods in several ways. The details of the implementation depend on how we represent time. In this

chapter, the attributes of a Time object are hour, minute, and second.

 As an alternative, we could replace these attributes with a single integer representing the number of seconds

since midnight. This implementation would make some methods, like is_after, easier to write, but it makes

some methods harder.

 After you deploy a new class, you might discover a better implementation. If other parts of the program are

using your class, it might be time-consuming and error-prone to change the interface. But if you designed

the interface carefully, you can change the implementation without changing the interface, which means

that other parts of the program don’t have to change.

>>> t = ['spam', 'egg', 'spam', 'spam', 'bacon', 'spam']

>>> histogram(t)

{'bacon': 1, 'egg': 1, 'spam': 4}

>>> t1 = Time(7, 43)

>>> t2 = Time(7, 31)

>>> t3 = Time(7, 37)

>>> total = sum(t1, t2, t3)

>>> print(total)

23:01:00

 Keeping the interface separate from the implementation means that you have to hide the attributes. Code in

other parts of the program (outside the class definition) should use methods to read and modify the state of

the object. They should not access the attributes directly. This principle is called information hiding; see

http://en.wikipedia.org/wiki/ Information_hiding.

	MODULE 1 INTRODUCTION TO PYTHON
	>>> print('Hello, world!')
	>>> print('Hello, world!') (1)
	>>> 48565878 * 578453
	>>> (5 - 1) * ((7 + 1) / (3 - 1))
	Assignment Statements
	>>> spam + eggs + spam
	>>> spam = 'Goodbye'
	Variable Names
	Al
	4
	The print() Function
	The input() Function
	Printing the User’s Name
	>>> len('My very energetic monster just scarfed nachos.')
	>>> print('I am ' + 29 + ' years old.')
	>>> 'I am ' + 29 + ' years old.'
	>>> print('I am ' + str(29) + ' years old.')
	MODULE 1- CHAPTER 2
	Boolean Operators
	Binary Boolean Operators
	The not Operator

	Mixing Boolean and Comparison Operators
	Elements of Flow Control
	Conditions
	Blocks of Code

	Flow Control Statements
	if Statements
	else Statements
	For Loops and the range() Function

	The Starting, Stopping, and Stepping Arguments to range()
	Importing Modules
	From import Statements

	Ending a Program Early with the sys.exit() Function
	CHAPTER 3 FUNCTIONS
	DEF STATEMENTS WITH PARAMETERS
	>>> print('cats', 'dogs', 'mice')
	>>> print('cats', 'dogs', 'mice', sep=',')
	Local Variables Cannot Be Used in the Global Scope
	Local Scopes Cannot Use Variables in Other Local Scopes
	Global Variables Can Be Read from a Local Scope
	Local and Global Variables with the Same Name
	MODULE-2 CHAPTER 1: LISTS
	The List Data Type
	Getting Individual Values in a List with Indexes
	Negative Indexes
	Getting Sublists with Slices
	 Difference between indexes and slices.

	Getting a List’s Length with len()
	Changing Values in a List with Indexes
	List Concatenation and List Replication
	Removing Values from Lists with del Statements
	Working with Lists
	Using for Loops with Lists
	The in and not in Operators
	The Multiple Assignment Trick
	Augmented Assignment Operators
	Methods
	Finding a Value in a List with the index() Method
	Adding Values to Lists with the append() and insert() Methods
	Removing Values from Lists with remove()
	Sorting the Values in a List with the sort() Method
	Example Program: Magic 8 Ball with a List
	Exceptions to Indentation Rules in Python
	List-like Types: Strings and Tuples
	Mutable and Immutable Data Types
	String
	List

	The Tuple Data Type
	Converting Types with the list() and tuple() Functions
	References
	Passing References
	The copy Module’s copy() and deepcopy() Functions

	MODULE 2
	CHAPTER2: DICTIONARIES AND STRUCTURING DATA
	The Dictionary Data Type
	Dictionaries vs. Lists
	The keys(), values(), and items() Methods
	Checking Whether a Key or Value Exists in a Dictionary
	The get() Method
	The setdefault() Method
	Pretty Printing
	Using Data Structures to Model Real-World Things
	Nested Dictionaries and Lists

	CHAPTER-1: MANIPULATING STRINGS
	Working with strings String Literals
	Double Quotes
	Escape Characters
	Raw Strings
	Multiline Strings with Triple Quotes
	Multiline Comments

	Indexing and Slicing Strings
	The in and not in Operators with Strings
	Useful String Methods
	The upper(), lower(), isupper(), and islower() String Methods
	The isX String Methods
	The startswith() and endswith() String Methods
	The join() and split() String Methods
	Join()
	Split()

	Justifying Text with rjust(), ljust(), and center()
	Removing Whitespace with strip(), rstrip(), and lstrip()
	Copying and Pasting Strings with the pyperclip Module
	Project: Password Locker
	Step 1: Program Design and Data Structures
	Step 2: Handle Command Line Arguments
	Step 3: Copy the Right Password
	Project: Adding Bullets to Wiki Markup
	Step 1: Copy and Paste from the Clipboard
	Step 2: Separate the Lines of Text and Add the Star
	Step 3: Join the Modified Lines

	MODULE 3
	CHAPTER 2-READING AND WRITING FILES
	Backslash on Windows and Forward Slash on macOS and Linux
	Using the / Operator to Join Paths
	The Current Working Directory
	The Home Directory
	Absolute vs. Relative Paths
	Creating New Folders Using the os.makedirs() Function
	Handling Absolute and Relative Paths
	Getting the Parts of a File Path
	Finding File Sizes and Folder Contents
	Modifying a List of Files Using Glob Patterns
	Checking Path Validity
	Opening Files with the open() Function
	Reading the Contents of Files
	Writing to Files
	Step 1: Store the Quiz Data in a Dictionary
	Step 2: Create the Quiz File and Shuffle the Question Order
	Step 3: Create the Answer Options
	Step 4: Write Content to the Quiz and Answer Key Files
	Step 1: Comments and Shelf Setup
	Step 2: Save Clipboard Content with a Keyword
	Extending the Multi-Clipboard
	Mad Libs

	MODULE 4
	CHAPTER 1- ORGANIZING FILES
	Copying Files and Folders
	Moving and Renaming Files and Folders
	Permanently Deleting Files and Folders
	Safe Deletes with the send2trash Module
	Reading ZIP Files
	Extracting from ZIP Files
	Creating and Adding to ZIP Files
	Step 1: Create a Regex for American-Style Dates
	Step 2: Identify the Date Parts from the Filenames
	Step 3: Form the New Filename and Rename the Files
	Ideas for Similar Programs
	Step 2: Create the New ZIP File
	Step 3: Walk the Directory Tree and Add to the ZIP File
	Ideas for Similar Programs (1)
	Selective Copy
	Deleting Unneeded Files
	Filling in the Gaps

	MODULE 4 (1)
	CHAPTER 2-DEBUGGING
	Using an Assertion in a Traffic Light Simulation
	Using the logging Module
	Logging Levels
	Disabling Logging
	Logging to a File
	Continue
	Step In
	Step Over
	Step Out
	Stop
	Debugging a Number Adding Program
	Breakpoints
	Debugging Coin Toss

	1. Programmer-defined types
	2. Attributes
	3. Rectangles
	4. Instances as return values
	5. Objects are mutable
	6. Copying
	CHAPTER 02 CLASSES AND FUNCTIONS
	2. Pure functions
	3. Modifiers
	4. Prototyping versus planning

	MODULE5
	CHAPTER 03 CLASSES AND METHODS
	2. Printing Objects
	3. Another Example
	4. A More Complicated Example
	5. The init Method
	6. The _str_ Method
	7. Operator Overloading
	8. Type-Based Dispatch
	9. Polymorphism

